Optical Conductivity and Dielectric Response of an Organic Aminopyridine NLO Single Crystal

Abstract

This paper explores the correlation of electro-optical properties with dielectric properties of an organic single crystal. The optical constants of the organic aminopyridine single crystal have been studied. The second harmonic generation efficiency of the grown crystal, based on powder measurement, is 2.9 times higher than that of KDP. The real and imaginary part of the complex refractive index and dielectric constant of the crystal were determined. The optical and electrical conductivity of the grown crystal were studied.

Share and Cite:

T. Arumanayagam and P. Murugakoothan, "Optical Conductivity and Dielectric Response of an Organic Aminopyridine NLO Single Crystal," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 13, 2011, pp. 1225-1231. doi: 10.4236/jmmce.2011.1013095.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Yari S. Kivshar, Optics Express, 16, 22126-22128 (2008).
[2] D.S. Chemla, J. Zyss, Nonlinear Optical properties of Organic materials and Crystals, Academic press, New York, 1987.
[3] Sabir H. Mashraqui, Rajesh S. Kenny, Shailesh G. Ghadigaonkar, Anukrishnan, Mily Bhattacharya, Puspendu K. Das, Optical Materials, 27, 257-260 (2004).
[4] Bhuvana K. Periyasamy, Robinson S. Jebas, Balasubramanian Thailampillai, Materials Letters, 61 (2007) 1489-1491.
[5] K. P. Bhuvana, S. Robinson and T. Balasubramanian, Cryst. Res. Technol., 45, 299-302 (2010).
[6] A.B. Jonna, M.J. Zaworotko, Crystal Growth and Design, 5, 1169-1179 (2005).
[7] Science News Online (6/6/98): Melanoma Madness The scientific flap over sunscreens and skin cancer -- Chemical studies (accessed 10/1/2009, 2009).
[8] K. Goksen, N.M. Gasanly and H. Ozkan, Acta Physica Polonica, 112, 93-100 (2007).
[9] Fahrettin Yakuphanoglu, Hilmi Erten, Optica applicata, 35, 969-976 (2005).
[10] A. Lucarelli, S. Lupi, P. Calvani and P. Maselli, Physical Review B, 65, 054511,1-7 (2002).
[11] E.I. Ugwu, A.S. Olayinka and F.I. Olabode, J. Eng. Applied Sci., 4, 126-131 (2009).
[12] S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).
[13] P. Mythili, T. Kanagasekaran, S. Stella Mary, D. Kanjilal and R. Gopalakrishnan, Nuclear Instruments and Methods in Physics Research Section B, 266, 1737-1740 (2008).
[14] K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031-2038 (1965).
[15] B. Narasimha, R.N. Choudhary, K.V. Roa, Mater.Sci. 23 1416 (1988).
[16] D. Balasubramanian, P. Murugakoothan, R. Jayavel, J. Cryst. Growth,312, 1855-1859 (2010).
[17] M. Vimalan, A. Ramanand and P. Sagayaraj, Cryst. Res. Technol, 42, 1091-1096 (2007).

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.