X-Ray Photoelectron Spectroscopy and Raman Spectroscopy Studies on Thin Carbon Nitride Films Deposited by Reactive RF Magnetron Sputtering

DOI: 10.4236/wjnse.2012.22012   PDF   HTML     5,963 Downloads   10,574 Views   Citations


Thin carbon nitride (CNx) films were synthesized on silicon substrates by reactive RF magnetron sputtering of a graphite target in mixed N2/Ar discharges and the N2 gas fraction in the discharge gas, F N, varied from 0.5 to 1.0. The atomic bonding configuration and chemical composition in the CNx films were examined using X-ray photoelectron spectroscopy (XPS) and the degree of structural disorder was studied using Raman spectroscopy. An increase in the nitrogen content in the film from 19 to 26 at% was observed at FN = 0.8 and found to influence the film properties; normality tests suggested that the data obtained at FN = 0.8 are not experimental errors. The interpretation of XPS spectra might not be always straightforward and hence the detailed and quantitative comparison of the XPS data with the information acquired by Raman spectroscopy enabled us to interpret the decomposed peaks in the N 1s and C 1s XPS spectra. Two N 1s XPS peaks at 398.3 and 399.8 eV (peaks N1 and N2, respectively) were assigned to a sum of pyridine-like nitrogen and -C≡N bond, and to a sum of pyrrole-like nitrogen and threefold nitrogen, respectively. Further, the peaks N1 and N2 were found to correlate with C 1s XPS peaks at 288.2 and 286.3 eV, respectively; the peak at 288.2 eV might include a contribution of sp3 carbon.

Share and Cite:

M. Matsuoka, S. Isotani, R. Mansano, W. Sucasaire, R. Pinto, J. Mittani, K. Ogata and N. Kuratani, "X-Ray Photoelectron Spectroscopy and Raman Spectroscopy Studies on Thin Carbon Nitride Films Deposited by Reactive RF Magnetron Sputtering," World Journal of Nano Science and Engineering, Vol. 2 No. 2, 2012, pp. 92-102. doi: 10.4236/wjnse.2012.22012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Y. Liu and M. L. Cohen, “Prediction of New Low Compressibility Solids,” Science, Vol. 245, No. 4920, 1989, pp. 841-842. doi:10.1126/science.245.4920.841
[2] N. Hellgren, M. P. Johansson, E. Broitman, L. Hultman and J.-E. Sundgren, “Role of Nitrogen in the Formation of Hard and Elastic CNx Thin Films by Reactive Magnetron Sputtering,” Physical Review B, Vol. 59, No. 7, 1999, pp. 5162-5169. doi:10.1103/PhysRevB.59.5162
[3] J. C. Sánchez-López, C. Donnet, F. Lefèbvre, C. Fernández-Ramos and A. Fernández, “Bonding Structure in Amorphous Carbon Nitride: A Spectroscopic and Nuclear Magnetic Resonance Study,” Journal of Applied Physics, Vol. 90, No. 2, 2001, pp. 675-681. doi:10.1063/1.1380998
[4] J. Neidhardt and L. Hultman, “Beyond β-C3N4-Fulleren-Like Carbon Nitride: A Promising Coating Material,” Journal of Vacuum Science and Technology A, Vol. 25, No. 4, 2007, pp. 633-644. doi:10.1116/1.2738505
[5] C. Quirós, P. Prieto, A. Fernández, E. Elizalde, C. Morant, R. Schlogl, O. Spillecke and J. M. Sanz, “Bonding and Morphology Study of Carbon Nitride Films Obtained by Dual Ion Beam Sputtering,” Journal of Vacuum Science and Technology A, Vol. 18, No. 2, 2000, pp. 515-523. doi:10.1116/1.582218
[6] D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov and J. W. Rabalais, “Carbon Nitride Deposited Using Energetic Species: A Two-Phase System,” Physical Review Letters, Vol. 73, No. 1, 1994, pp. 118-121. doi:10.1103/PhysRevLett.73.118
[7] C. Ronning, H. Feldermann, R. Merk and H. Hofs?ss, “Carbon Nitride Deposited Using Energetic Species: A Reviews on XPS Studies,” Physical Review B, Vol. 58, No. 4, 1998, pp. 2207-2215. doi:10.1103/PhysRevB.58.2207
[8] W. Sucasaire, M. Matsuoka, K. C. Lopes, J. C. R. Mittani, L. H. Avanci, J. F. D. Chubaci, N. Added, V. Trava and E. J. Corat, “Raman and Infrared Spectroscopy Studies of Carbon Nitride Films Prepared on Si(100) Substrates by Ion Beam Assisted Deposition,” Journal of the Brazilian Chemical Society, Vol. 17, No. 6, 2006, pp. 1163-1169. doi:10.1590/S0103-50532006000600014
[9] J. M. Ripalda, E. Román, N. Díaz, L. Galán, I. Montero, G. Comelli, A. Baraldi, S. Lizzit, A. Goldoni and G. Paolucci, “Correlation of X-Ray Absorption and X-Ray Photoelectron Spectroscopies in Amorphous Carbon Nitride,” Physical Review B, Vol. 60, No. 6, 1999, pp. R3705-R3708. doi:10.1103/PhysRevB.60.R3705
[10] R. McCann, S. S. Roy, P. Papakonstantinou, J. A. McLaughlin and S. C. Ray, “Spectroscopic Analysis of a-C and a-CNx Films Prepared by Ultrafast High Repetition Rate Pulsed Laser Deposition,” Journal of Applied Physics, Vol. 97, No. 7, 2005, pp. 073522-1 -073522-11. doi:10.1063/1.1874300
[11] Y. Zhang, Z. Zhou and H. Li, “Crystalline Carbon Nitride Films Formation by Chemical Vapor Deposition,” Applied Physics Letters, Vol. 68, No. 5, 1996, pp. 634-636. doi:10.1063/1.116492
[12] S. Muhl and J. M. Méndez, “A Review of the Preparation of Carbon Nitride Films,” Diamond and Related Materials, Vol. 8, No. 10, 1999, pp. 1809-1830. doi:10.1016/S0925-9635(99)00142-9
[13] C. Niu, Y. Z. Lu and C. M. Lieber, “Experimental Realization of the Covalent Solid Carbon Nitride,” Science, Vol. 261, No. 5119, 1993, pp. 334-337. doi:10.1126/science.261.5119.334
[14] S. Matsumoto, E.-Q. Xie and F. Izumi, “On the Validity of the Formation of Crystalline Carbon Nitride, C3N4,” Diamond and Related Materials, Vol. 8, No. 7, 1999, pp. 1175-1182. doi:10.1016/S0925-9635(99)00103-X
[15] F. Le Normand, J. Hommet, T. Szorényi, C. Fuchs and E. Fogarassy, “XPS Study of Pulsed Laser Deposited CNx Films,” Physical Review B, Vol. 64, No. 23, 2001, pp. 235416-1 -235416-15. doi:10.1103/PhysRevB.64.235416
[16] A. C. Ferrari, S. E. Rodil and J. Robertson, “Interpretation of Infrared and Raman Spectra of Amorphous Carbon Nitride,” Physical Review B, Vol. 67, No. 15, 2003, pp. 155306-1 -155306-20. doi:10.1103/PhysRevB.67.155306
[17] M. Matsuoka, S. Isotani, J. C. R. Mittani, J. F. D. Chubaci, K. Ogata and N. Kuratani, “Effects of Arrival Rate and Gas Pressure on the Chemical Bonding and Composition in Titanium Nitride Films Prepared on Si(100) Substrates by Ion Beam and Vapor Deposition,” Journal of Vacuum Science and Technology A, Vol. 23, No. 1, 2005, pp. 137-141. doi:10.1116/1.1839895
[18] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani and K. Ogata, “X-Ray Photoelectron Spectroscopy Analysis of Zirconium Nitride-Like Films Prepared on Si(100) Substrates by Ion Beam Assisted Deposition,” Surface and Coating Technology, Vol. 202, No. 13, 2008, pp. 3129-3135. doi:10.1016/j.surfcoat.2007.11.019
[19] M. Matsuoka, S. Isotani, W. Sucasaire, L. S. Zambom and K. Ogata, “Chemical Bonding and Composition of Silicon Nitride Films Prepared by Inductively Coupled Plasma Chemical Vapor Deposition,” Surface and Coating Technology, Vol. 204, No. 18-19, 2010, pp. 2923-2927. doi.org/10.1016/j.surfcoat.2010.02.071
[20] S. Neuville and A. Matthews, “A Perspective on the Optimization of Hard Carbon and Related Coatings for Engineering Applications,” Thin Solid Films, Vol. 515, No. 17, 2007, pp. 6619-6653. doi:10.1016/j.tsf.2007.02.011
[21] S. Doniach and M. Sunjic, “Many-Electron Singularity in X-Ray Photoemission an X-Ray Line Spectra from Metals,” Journal of Physics C, Vol. 3, No. 2, 1970, pp. 285-291.
[22] M. Matsuoka, S. Isotani, S. Miyake, Y. Setsuhara, K. Ogata and N. Kuratani, “Effects of Ion Energy and Arrival Rate on the Composition of Zirconium Oxide Films Prepared by Ion-Beam Assisted Deposition,” Journal of Applied Physics, Vol. 8, No. 2, 1996, pp. 1177-1181. doi:10.1063/1.362855
[23] S. Isotani and A. T. Fujii, “A Grid Procedure Applied to the Determination of Parameters of a Kinetic Process,” Computer Physics Communications, Vol. 151, No. 1, 2003, pp. 1-7. doi:10.1016/S0010-4655(02)00692-6
[24] S. Isotani, A. R. Blak and S. Watanabe, “UV Optical Absorption Spectra Analysis of Beryl Crystals from Brazil,” Physica B: Condensed Matter, Vol. 405, No. 6, 2010, pp. 1501-1508. doi:10.1016/j.physb.2009.12.029
[25] Y. Kusano, J. E. Evetts, R. E. Somekh and I. M. Hutchings, “Properties of Carbon Nitride Films Deposited by Magnetron Sputtering,” Thin Solid Films, Vol. 332, No. 1-2, 1998, pp. 56-61. doi:10.1016/S0040-6090(98)00983-3
[26] J. Neidhardt, L. Hultman, B. Abendroth, R. Gago and W. M?ller, “Diagnostics of a N2/Ar Direct Current Magnetron Discharge for Reactive Sputter Deposition of Fullerene-Like Carbon Nitride Thin Films,” Journal of Applied Physics, Vol. 94, No. 11, 2003, pp. 7059-7066. doi:10.1063/1.1625091
[27] J. Robertson, “Diamond-Like Amorphous Carbon,” Materials Science and Engineering: R: Reports, Vol. 37, No. 4-6, 2002, pp. 129-281. doi:10.1016/S0927-796X(02)00005-0
[28] L. Hultman, J. Neidhardt, N. Hellgren, H. Sjostrom and J.-E. Sundgren, “Fullerene-Like Carbon Nitride: A Resilient Coating Material,” MRS Bulletin, Vol. 28, No. 3, 2003, pp. 194-202. doi:10.1557/mrs2003.62
[29] T. W. Anderson and D.A. Darling, “Asymptotic Theory of Certain Goodness of Fit Criteria Based on Stochastic Processes,” Annals of Mathematical Statistics, Vol. 23, No. 2, 1952, pp. 193-212. doi:10.1214/aoms/1177729437
[30] User Manual of the Software Action, “Teste de Anderson-Darling,” Chapter 6.3. http://www.portalaction.com.br/content/63-teste-de-anderson-darling
[31] F.-R. Weber and H. Oechsner, “Properties of Carbon Nitride Layers Generated by Direct Plasma Beam Deposition,” Surface and Coatings Technology, Vol. 74-75, Part 2, 1995, pp. 704-709. doi:10.1016/0257-8972(95)08269-7
[32] J. T. Titantah and D. Lamoen, “Carbon and Nitrogen 1s Energy Levels in Amorphous Carbon Nitride Systems: XPS Interpretation Using First-Principles,” Diamond and Related Materials, Vol. 16, No. 3, 2007, pp. 581-588. doi:10.1016/j.diamond.2006.11.048
[33] B. Marchon, J. Gui, K. Grannen, G. C. Rahch, J. W. Ager III, S. R. P. Silva and J. Robertson, “Photoluminescence and Raman Spectroscopy in Hydrogenated Carbon Films,” IEEE Transactions on Magnetics, Vol. 33, No. 5, 1997, pp. 3148-3150. doi:10.1109/20.617873
[34] A. C. Ferrari and J. Robertson, “Interpretation of Raman Spectra of Disordered and Amorphous Carbon,” Physical Review B, Vol. 61, No. 20, 2000, pp. 14095-14107. doi:10.1103/PhysRevB.61.14095
[35] F. Tuinstra and J. L. Koenig, “Raman Spectra of Graphite,” The Journal of Chemical Physics, Vol. 53, No. 3, 1970, pp. 1126-1130. doi:10.1063/1.1674108
[36] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, “Raman Spectroscopy on Amorphous Carbon Films,” Journal of Applied Physics, Vol. 80, No. 1, 1996, pp. 440-447. doi:10.1063/1.362745
[37] M. Lejeune, S. Charve t, A. Zeinert and M. Benlahsen, “Optical Behavior of Reactive Sputtered Carbon Nitride Films during Annealing,” Journal of Applied Physics, Vol. 103, No. 1, 2008, pp. 0135071-0135078. doi:10.1063/1.2828166
[38] J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu and K. M. Thomas, “Evolution of Nitrogen Functionalities in Carbonaceous Materials during Pyrolysis,” Carbon, Vol. 33, No. 11, 1995, pp. 1641-1653. doi:10.1016/0008-6223(95)00154-6
[39] Q. Zhu, S. L. Money, A. E. Russell and K. M. Thomas, “Determination of the Fate of Nitrogen Functionalities in Carbonaceous Materials during Pyrolysis and Combustion Using X-Ray Absorption Near Edge Structure Spectroscopy,” Langmuir, Vol. 13, No. 7, 1997, pp. 2149-2157. doi:10.1021/la961027s
[40] M. C. Santos and F. Alvarez, “Nitrogen Substitution of Carbon in Graphite: Structure Evolution toward Molecular Forms,” Physical Review B, Vol. 58, No. 20, 1998, pp. 13918-13924. doi:10.1103/PhysRevB.58.13918
[41] I. Jiménez, R. Gago, J. M. Albella, D. Cáceres and I. Vergara, “Spectroscopy of Bonding in Hard Graphitic Carbon Nitride Films: Superstructure of Basal Planes and Hardening Mechanisms,” Physical Review B, Vol. 62, No. 7, 2000, pp. 4261-4264. doi:10.1103/PhysRevB.62.4261
[42] H. Sjostrom, S. Stafstrom, M. Boman and J.-E. Sundgren, “Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure,” Physical Review Letters, Vol. 75, No. 7, 1995, pp. 1336-1339. doi:10.1103/PhysRevLett.75.1336

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.