An Analytical Approach for Degree Correlations in Complex Network

DOI: 10.4236/wjm.2012.23020   PDF   HTML   XML   3,338 Downloads   5,415 Views   Citations

Abstract

We investigate correlations between neighbor degrees in the scale-free network. According to the empirical studies, it is known that the degree correlations exhibit nontrivial statistical behaviors. With using an analytical approach, we show that the scale-freeness and one of statistical laws for degree correlations can be reproduced consistently in a unified framework. Our result would have its importance in understanding the mechanisms which generate the complex network.

Share and Cite:

K. Takagi, "An Analytical Approach for Degree Correlations in Complex Network," World Journal of Mechanics, Vol. 2 No. 3, 2012, pp. 171-174. doi: 10.4236/wjm.2012.23020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol. 286, No. 5439, 1999, pp. 509-512. doi:10.1126/science.286.5439.509
[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J. Wiener, “Graph Structure in the Web,” Computer Networks, Vol. 33, No. 1-6, 2000, pp. 309-320. doi:10.1016/S1389-1286(00)00083-9
[3] M. Faloutsos, P. Faloutsos and C. Faloutsos, “On Power- Law Relationships of the Internet Topology,” ACM SIG- COMM Computer Communication Review, Vol. 29, No. 4, 1999, pp. 251-262. doi:10.1145/316194.316229
[4] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks,” Advances in Physics, Vol. 51 No. 4, 2002, pp. 1079-1187. doi:10.1080/00018730110112519
[5] R. Albert and A.-L. Barabási, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics, Vol. 74, No. 1, 2002, pp. 47-97. doi:10.1103/RevModPhys.74.47
[6] M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review, Vol. 45, No. 2, 2003, pp. 167-256 doi:10.1137/S003614450342480
[7] R. Albert, H. Jeong and A.-L. Barabási, “Internet: Diameter of the World-Wide Web,” Nature, Vol. 401, No. 6749, 1999, pp. 130-131. doi:10.1038/43601
[8] M. E. J. Newman, “Scientific Collaboration Networks. I. Network Construction and Fundamental Results,” Physical Review E, Vol. 64, No. 1, 2001, pp. 1-8. doi:10.1103/PhysRevE.64.016131
[9] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A.-L. Barabási, “The Large-Scale Organization of Metabolic Networks,” Nature, Vol. 407, No. 6804, 2000, pp. 651- 654. doi:10.1038/35036627
[10] H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai, “Lethality and Centrality in Protein Networks,” Nature, Vol. 411, No. 6833, 2001, pp. 41-42. doi:10.1038/35075138
[11] A.-L. Barab′asi, R. Albert and H. Jeong, “Mean-Field Theory for Scale-Free Random Networks,” Physica A, Vol. 272, No. 1-2, 1999, pp. 173-187. doi:10.1016/S0378-4371(99)00291-5
[12] P. L. Krapivsky, S. Redner and F. Leyvraz, “Connectivity of Growing Random Networks,” Physical Review Letters, Vol. 85, No. 21, 2000, pp. 4629-4632. doi:10.1103/PhysRevLett.85.4629
[13] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, “Structure of Growing Networks with Preferential Linking,” Physical Review Letters, Vol. 85, No. 21, 2000, pp. 4633-4636. doi:10.1103/PhysRevLett.85.4633
[14] C. Song, S. Havlin and H. A. Makse, “Self-Similarity of Complex Networks,” Nature, Vol. 433, No. 7024, 2005, pp. 392-395. doi:10.1038/nature03248
[15] C. Song, S. Havlin and H. A. Makse, “Origins of Fractality in the Growth of Complex Networks,” Nature Physics, Vol. 2, 2006, pp. 275-281. doi:10.1038/nphys266
[16] S. Maslov and K. Sneppen, “Specificity and Stability in Topology of Protein Networks,” Science, Vol. 296 no. 5569 2002, pp. 910-913. doi:10.1126/science.1065103
[17] R. Pastor-Satorras A. Vázquez and A. Vespignani, “Dynamical and Correlation Properties of the Internet,” Phy- sical Review Letters, Vol. 87, No. 25, 2001, p. 258701. doi:10.1103/PhysRevLett.87.258701
[18] M. E. J. Newman, “Assortative Mixing in Networks,” Phy- sical Review Letters, Vol. 89, No. 20, 2002, p. 208701. doi:10.1103/PhysRevLett.89.208701
[19] K. Takagi, “Scale Free Distribution in an Analytical Approach,” Physica A, Vol. 389, No. 10, 2010, pp. 2143- 2146. doi:10.1016/j.physa.2010.01.034

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.