Synthesis and Electrical Properties of Polyaniline Composite with Silver Nanoparticles

Abstract

Polyaniline/silver (PANI/Ag) nanocomposite was prepared by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. The formation of PANI/Ag nanocomposite was characterized by XRD, FTIR, TEM, UV-vis spectroscopy. The XRD patterns indicated that the crystalline phase of Ag is cubic with crystallite size of 93 nm. The TEM image shows that the Ag nanoparticles are well dispersed in the polyaniline matrix. Optical measurements show that the value of optical band gap of nanocomposite is lower than that of pure PANI. The DC-, AC-conductivities, dielectric permittivity (ε') and dielectric loss (ε'') of (PANI/Ag) nanocomposite and pure PANI have been measured in the temperature range from 303 to 723 K and frequency range from 10 to 103 kHz. The electrical conductivity of the (PANI/Ag) nanocomposite is higher than pure PANI. Temperature variation of frequency exponents in this blend suggests that AC-conductivity is attributed to correlated barrier hopping mechanism. At all frequencies, the ε' value for (PANI/Ag) nanocomposite is higher than that for pure one. The higher dielectric constant of the PANI/Ag nanocomposite indicates their better ability to store electric potential energy under the influence of alternative electric field.

Share and Cite:

S. M. Reda and S. M. Al-Ghannam, "Synthesis and Electrical Properties of Polyaniline Composite with Silver Nanoparticles," Advances in Materials Physics and Chemistry, Vol. 2 No. 2, 2012, pp. 75-81. doi: 10.4236/ampc.2012.22013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. B. Shumaila, V. S. Lakshmi, M. Alam, A. M. Siddiqui, M. Zulfequar and M. Husain, “Synthesis and Characterization of Se Doped Polyaniline,” Current Applied Physics, Vol. 11, No. 2, 2010, pp. 217-222. doi:10.1016/j.cap.2010.07.010
[2] K. Gupta, P. C. Jana and A. K. Meikap, “Optical and Electrical Transport Properties of Polyaniline-Silver Nano-composite,” Synthetic Metals, Vol. 160, No. 13-14, 2010, pp. 1566- 1573.
[3] S. S. Umare, B. H. Shambharkar and R. S. Ningthoujam, “Synthesis and Characterization of Polyaniline-Fe3O4 Nanocomposite: Electrical Conductivity, Magnetic, Electrochemical Studies,” Synthetic Metals, Vol. 160, No. 17-18, 2010, pp. 1815-1821. doi:10.1016/j.synthmet.2010.06.015
[4] A. Choudhury, “Polyaniline/Silver Nanocomposites: Dielectric Properties and Ethanol Vapour Sensitivity,” Sensors and Actuators B: Chemical, Vol. 138, No. 1, 2009, pp. 318-325. doi:10.1016/j.snb.2009.01.019
[5] V. Ali, R. Kaur, N. Kamal, S. Singh, S. C. Jain, H. P. S. Kang, M. Zulfequar and M. Hu-sain, “Use of Cu+1 Dopant and It’s Doping Effects on Polyani-line Conducting System in Water and Tetrahydrofuran,” Journal of Physics and Chemistry of Solids, Vol. 67, No. 4, 2006, pp. 659- 664. doi:10.1016/j.jpcs.2005.10.172
[6] S. Kazim, V. Ali, M. Zulfequar, M. M. Haq and M. Husain, “Electrical, Thermal and Spectroscopic Studies of Te Doped Polyaniline,” Current Applied Physics, Vol. 7, No. 1, 2007, pp. 68-75. doi:10.1016/j.cap.2005.11.072
[7] K. S. Ryu, B. W. Moon, J. Joo and S. H. Chang, “Characterization of Highly Conducting Lithium Salt Doped Polyaniline Films Prepared from Polymer Solution,” Polymer, Vol. 42, No. 23, 2001, pp. 9355-9360. doi:10.1016/S0032-3861(01)00522-5
[8] J. C. Xu, W. M. Liu and H. L. Li, “Titanium Dioxide Doped Polyaniline,” Material Science Engineering: C, Vol. 25, No. 4, 2005, pp. 444-447.
[9] N. V. Blinova, J. Stejskal, M. Trchova, I. Sapurina and G. C. Marjanovic, “The Oxidation of Aniline with Silver Nitrate to Polyaniline-Silver Composites,” Polymer, Vol. 50, No. 1, 2009, pp. 50-56. doi:10.1016/j.polymer.2008.10.040
[10] M. Risti?, M. Ivanda, S. Popvi? and S. Musi?, “Dependence of Nanocrystalline SnO2 Particle Size on Synthesis Route,” Journal of Non-Crystalline Solids, Vol. 303, No. 2, 2002, pp. 270-280. doi:10.1016/S0022-3093(02)00944-4
[11] N. F. Mott and E. A. Davis, “Electronic Process in Non- Crystalline Materials,” Cla-rendon Press, Oxford, 1979.
[12] S. Ebrahim, A. H. Kashyout and M. Soliman, “Ac and Dc Conductivities of Polyaniline/Poly Vinyl Formal Blend Films,” Current Applied Physics, Vol. 9, No. 2, 2009, pp. 448-454. doi:10.1016/j.cap.2008.04.007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.