Conical Structures on Acrylic Intraocular Lens (IOLs) Materials after 193-nm Excimer Laser Ablation

Abstract

Intraocular lens (IOLs) implants are synthetic lenses used to replace the natural lens of the eye and obtain optical reha- bilitation. The materials and methods of IOLs fabrication have been correlated with postoperative complications such as diffractive aberrations, capsular opacification or discoloration. Thus, several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs). In our work, we studied the use of UV laser as an alternative method to conventional surface shaping techniques for IOLs etching. Ablation experiments were conducted on hydrophobic acrylic IOLs by a commercial excimer laser system used in photorefractive surgery. The morphology of the irradiated area was observed by scanning electron microscopy (SEM) and a mathematical algorithm was used for SEM image processing. The effect of IOLs exposure to UV light before excimer laser irradiation was also examined, since natural ageing and cross-linking of IOLs material were reported. Conical structures were revealed after UV laser ablation and their population was increased with the number of laser pulses. Period distribution of cones was measured with the combination of image processing and a scanning algorithm which was developed for this reason. According to the graphs, the mean period and the distribution of the cones was depending of the number of irradiation pulses and the exposure to UV lamp before laser irradiation. Although a photochemical and a theoretically smooth-surface ablation mechanism is considered for the UV excimer laser interaction with polymers, surface conical-like abnormalities and thermal degradation of the lenses materials was observed.

Share and Cite:

E. Spyratou, M. Makropoulou, D. Tsoutsi, G. Zoulinakis, C. Bacharis, I. Asproudis and A. Serafetinides, "Conical Structures on Acrylic Intraocular Lens (IOLs) Materials after 193-nm Excimer Laser Ablation," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 414-424. doi: 10.4236/msa.2012.36059.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. A. Davison and M. J. Simpson “History and Development of the Apodized Diffractive Intraocular Lens,” Journal of Cataract and Refractive Surgery, Vol. 32, No. 5, 2006, pp. 849-858. doi:10.1016/j.jcrs.2006.02.006
[2] S. Jain, I. Aurora and D. T. Asar, “Success of Monovision in Presbyopes: Review of Literature and Potential Applications to Refractive Surgery,” Survey of Ophthalmology, Vol. 40, No. 6, 1996, pp. 491-499. doi:10.1016/S0039-6257(96)82015-7
[3] J. C. Javitt and R. F. Steinert, “Cataract Extraction with Multifocal Intraocular Lens Implantation: A Multinational Clinical Trial Evaluating Clinical, Functional, and Quality-of-Life Outcomes,” Ophthalmology, Vol. 107, No. 11, 2000, pp. 2040-2048. doi:10.1016/S0161-6420(00)00368-7
[4] H. N. Sen, A. U. Sarikkola, R. J. Uusitalo and L. Laatikainen, “Quality of Vision after AMO Array Multifocal Intraocular Lens Implantation,” Journal of Cataract and Refractive Surgery, Vol. 30, No. 12, 2004, pp. 2483-2493. doi:10.1016/j.jcrs.2004.04.049
[5] R. J. Olson, L. Werner, N. Mamalis and R. Cionni, “New Intraocular Lens Technology,” American Journal of Ophthalmology, Vol. 140, No. 4, 2005, pp. 709-716. doi:10.1016/j.ajo.2005.03.061
[6] R. F. Steinert, B. L. Aker and D. J. Trentacost, “A Prospective Comparative Study of the AMO Array ZonalProgressive Multifocal Silicone Intraocular Lens and a Monofocal Intraocular Lens,” Ophthalmology, Vol. 106, No. 7, 1999, pp. 1243-1255. doi:10.1016/S0161-6420(99)00704-6
[7] T. Oshika, T. Nagata and Y. Ishii, “Adhesion of Lens Capsule to Intraocular Lenses of Polymethylmethacrylate, Silicone and Acrylic Foldable Materials: An Experimental Study,” British Journal of Ophthalmology, Vol. 82, No. 5, 1998, pp. 549-553. doi:10.1136/bjo.82.5.549
[8] V. Sankar, T. K. Kumar and K. R. Punduranga, “Preparation Characterization and Fabrication of Intraocular Lenses from Photon Initiated Polymerized Poly (Methymethacrylate),” Trends in Biomaterial and Artificial Organs, Vol. 17, No. 2, 2004, pp. 24-30.
[9] S. D. McLeod, V. Portney and A. Ting, “A Dual Optic Accommodating Foldable Intraocular Lens,” British Journal of Ophthalmology, Vol. 87, No. 9, 2003, pp. 1083-1085. doi:10.1136/bjo.87.9.1083
[10] M. C. Kraff, D. Sanders and H. L. Lieberman, “Serial Corneal Endothelial Cell Loss with Lathe-Cut and Injection-Molded Posterior Chamber Intraocular Lenses,” Journal of American Intraocular Implant Society, Vol. 9, No. 3, 1983, pp. 301-305.
[11] S. E. Wilson and R. F. Brubaker, “Neodymium:YAG Laser Damage Threshold. A Comparison of Injection-Molded and Lathe-Cut Polymethylmethacrylate Intraocular Lenses,” Ophthalmology, Vol. 94, No. 1, 1987, pp. 7-11.
[12] P. E. Dyer, “Excimer Laser Polymer Ablation: Twenty Years on,” Applied Physics A, Vol. 77, No. 2, 2003, pp. 167-173. doi:10.1007/s00339-003-2137-1
[13] A. A. Serafetinides, M. Makropoulou, E. Fabrikesi, E. Spyratou, C. Bacharis, R. R. Thomson and A. K. Kar, “Ultrashort Laser Ablation of PMMA and Intraocular Lenses,” Applied Physics A, Vol. 93, No. 1, 2008, pp. 111-116. doi:10.1007/s00339-008-4666-0
[14] K. Naessens, H. Ottevaere, P. Daele and R. Baets, “Flexible Fabrication of Microlenses in Polymer Layers with Excimer Laser Ablation,” Applied Surface Science, Vol. 208-109, 2003, pp. 159-164. doi:10.1016/S0169-4332(02)01359-4
[15] A. Fuxbruner, I. Hemo, A. Lewis, A. Zauberman, D. Blau and D. Polotsky, “Controlled Lens Formation with Unperturbed Excimer Lasers: Use with Organic Polymers and Corneal Tissues,” Applied Optics, Vol. 29, No. 36, 1990, pp. 5380-5386. doi:10.1364/AO.29.005380
[16] F. Manns, P. Rol, J. M. Parel, A. Schmid, J. H. Shen, T. Matsui and P. Soderberg, “Optical Profilometry of Poly (Methylmethacrylate) Surfaces after Reshaping with a Scanning Photorefractive Keratectomy (SPRK) System,” Applied Optics, Vol. 35, No. 19, 1996, pp. 3338-3391. doi:10.1364/AO.35.003338
[17] T. Lippert, J. Wei, A. Wokaun, N. Hoogen and O. Nuyken, “Development and Structuring of Combined Positive Negative/Negative-Positive Resists Using Laser Ablation as Positive Dry Etching Technique,” Macromolecular Materials and Engineering, Vol. 283, No. 1, 2000, pp. 140-143. doi:10.1002/1439-2054(20001101)283:1<140::AID-MAME140>3.0.CO;2-F
[18] E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou and A. A. Serafetinides, “UV Laser Ablation of Intraocular Lenses: SEM and AFM Microscopy Examination of the Biomaterial Surface,” Applied Surface Science, Vol. 256, No. 8, 2010, pp. 2539-2545. doi:10.1016/j.apsusc.2009.10.101
[19] Z. X. Yuan, P. Reinach and J. P. Yuan, “Contrast Sensitivity and Colour Vision with a Yellow Intraocular Len,” American Journal of Ophthalmology, Vol. 138, No. 1, 1998, pp. 1004-1010. doi:10.1016/j.ajo.2004.02.024
[20] Y. Yanagi, Y. Inoue, A. Iriyama and W. D. Jang, “Effects of Yellow Intraocular Lenses on Light-Induced Upregulation of Vascular Endothelial Growth Factor,” Journal of Cataract and Refractive Surgery, Vol. 32, No. 9, 2006, pp. 1540-1544. doi:10.1016/j.jcrs.2006.04.012
[21] P. E. Dyer, “Laser Ablation of Polymers,” In: I. W. Boyd and R. B. Jackman, Eds. Photochemical Processing of Electronic Materials, Academic, London, 1992, pp. 360-385.
[22] H. Sato and S. Nishio, “Polymer Laser Photochemistry, Ablation, Reconstruction, and Polymerization,” Journal of Photochemical Photobiology C, Vol. 2, No. 13, 2001, pp. 139-152. doi:10.1016/S1389-5567(01)00015-6
[23] J. F. Silvain, H. Niino, S. Ono, S. Nakaoka and A. Yabe, “Surface Modification of Elastomer Carbon Composite by Nd:YAG Laser and KrF Excimer Laser Ablation,” Applied Surface Science, Vol. 141, No. 1-2, 1999, pp. 25-34. doi:10.1016/S0169-4332(98)00611-4
[24] T. V. Chirila and P. P Saarloos, “Ablation of Poly (2-Hydroxyethyl Methacrylate) by 193-nm Excimer Laser Radiation,” Journal of Applied Polymer Science, Vol. 44, No. 8, 1992, pp. 1355-1363. doi:10.1002/app.1992.070440806
[25] S. Ono, S. Nakaoka, J. Wang, H. Niino and A. Yabe, “Formation of Elastic Cone-Like Microstructures on the Composite of Elastomer and Carbon Black by Excimer Laser Ablation,” Journal of Applied Physics, Vol. 36, 1997, pp. 1387-1389. doi:10.1143/JJAP.36.L1387
[26] P. Moreno, C. Méndez, A. García, I. Arias and L. Roso, “Femtosecond Laser Ablation of Carbon Reinforced Polymers,” Applied Surface Science, Vol. 252, No. 12, 2006, pp. 4110-4119. doi:10.1016/j.apsusc.2005.06.008
[27] A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek and M. Szczurek, “Ablation and Surface Modifications of PMMA Using a Laser-Plasma EUV Source,” Applied Physics B, Vol. 96, No. 4, 2009, pp. 727-730. doi:10.1007/s00340-009-3692-8
[28] R. Belli, L. Toniutti, A. Miotello, P. Mosaner and D. Avi, “Excimer Laser Irradiation at 248 nm of Wooden Archaeological Objects and Polymeric Consolidants Used in Conservation: A Study of Cone Formation and Optimum Cleaning Parameters,” Applied Physics A, Vol. 92, No. 1, 2008, pp. 217-221. doi:10.1007/s00339-008-4485-3
[29] B. Hopp, Z. S. Bor, E. Homolya and E. Mihalik, “Investigation of Conical Structures Created by ArF Excimer Laser Irradiation of Polycarbonate,” Applied Surface Science, Vol. 109-110, No. 1, 1997, pp. 232-235. doi:10.1016/S0169-4332(96)00915-4
[30] Y. G. Yingling and B. J. Garrison, “Coarse-Grained Model of the Interaction of Light with Polymeric Material: Onset of Ablation,” Journal of Physics Chemistry B, Vol. 109, No. 34, 2005, pp. 16482-16489. doi:10.1021/jp0527711
[31] R. Srinivasan, M. A. Smrtic and S. V. Babu, “Excimer Laser Etching of Polymers,” Journal of Applied Physics, Vol. 59, No. 11, 2005, pp. 3861-3867. doi:10.1063/1.336728
[32] B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold and D. B?erle, “The Role of Excited Species in UltravioletLaser Materials Ablation III. Non-Stationary Ablation of Organic Polymers,” Applied Physics A, Vol. 62, No. 5, 1996, pp. 397-401. doi:10.1007/BF01567110
[33] D. J. Krajnovich, “Near-Threshold Photoablation Characteristics of Polyimide And Poly(Ethylene Terephthalate),” Journal of Applied Physics, Vol. 82, No. 1, 1997, pp. 427-435. doi:10.1063/1.366290
[34] J. D. Spear and R. E. Russo, “Transverse Photothermal Beam Deflection within a Solid,” Journal of Applied Physics, Vol. 70, No. 2, 199, pp. 580-586. doi:10.1063/1.349659
[35] S. W. Wee and S. M. Park, “Laser Ablation of Poly(Methyl Methacrylate) at 266 nm,” Bulletin Korean Chemistry Society, Vol. 22, No. 8, 2001, pp. 914-916.
[36] E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti and C. Fotakis, “Ultraviolet Laser Micro-Structuring of Silicon and the Effect of Laser Pulse Duration on the Surface Morphology,” Applied Surface Science, Vol. 252, No. 13, 2006, pp. 4462-4466. doi:10.1016/j.apsusc.2005.07.120

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.