Induction of Defensive Responses in Eucalyptus globulus (Labill) Plants, against Ctenarytaina eucalypti (Maskell) (Hemiptera: Psyllidae)

DOI: 10.4236/ajps.2012.35071   PDF   HTML   XML   4,443 Downloads   7,537 Views   Citations


This study evaluated the expression of defense compounds from the secondary metabolism of Eucalyptus globulus plants, subjected to direct and indirect stimuli by the insect Ctenarytaina eucalypti (blue gum Psyllid). Results showed that defense responses were activated in plants in all tested cases. Were detected and identified thirty-two compounds in the leaves of treated plants, of which five compounds differed with the control, and all are part of the chemical defenses from the plants, three of them were oxygenated monoterpenes (borneol, exo-2-hydroxy cineole and thymol), a aromatic carboxylic acid (benzoic acid) and a quinone (6-acethyl-flaviolin). The plants induced by volatile compounds and by indirect entomological manner, showed its capability to synthesize defensive compounds without a wound that promotes these responses. Were also found some constitutive secondary metabolites over expressed in the different inductions compared with the control.

Share and Cite:

C. Troncoso, J. Becerra, C. Perez, V. Hernandez, A. Martin, M. Sanchez-Olate and D. Rios, "Induction of Defensive Responses in Eucalyptus globulus (Labill) Plants, against Ctenarytaina eucalypti (Maskell) (Hemiptera: Psyllidae)," American Journal of Plant Sciences, Vol. 3 No. 5, 2012, pp. 589-595. doi: 10.4236/ajps.2012.35071.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Camarena, “Signals in Plant Insect Interaction,” Magazine Chapingo Series of Forestry and Environment Sciences Series, Vol. 15, No. 1, 2009, pp. 81-85.
[2] L. Mattiacci, B. Rocca, N. Scascighini, M. D’alessandro, A. Hern and S. Dorn, “Systemically Induced Plant Volatiles Emitted at the Time of Danger,” Journal of Chemical Ecology, Vol. 27, No. 11, 2001, pp. 2233-2252. doi:10.1023/A:1012278804105
[3] P. Pare and J. Tumlinson, “Plant Volatiles as a Defense against Insect Herbivores,” Plant Physiology, Vol. 121, No. 2, 1999, pp. 325-331. doi:10.1104/pp.121.2.325
[4] F. Gozzo, “Systemic Acquired Resistance in Crop Protection: From Nature to a Chemical Approach,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 16, 2003, pp. 4487-4503. doi:10.1021/jf030025s
[5] E. Shaaya, M. Kostjukovski, J. Eilberg and C. Sukprakarn, “Plant Oils as Fumigants and Contact Insecticides for the Control of Stored-Product Insects,” Journal Stored Products Research, Vol. 33, No. 1, 1997, pp. 7-15. doi:10.1016/S0022-474X(96)00032-X
[6] B. Lee, W. Choi, S. Lee and B. Park, “Fumigant Toxicity of Essential Oils and Their Constituent Compounds towards the Rice Weevil Sitophilus oryzae (L.),” Crop Protection, Vol. 20, No. 4, 2001, pp. 317-320. doi:10.1016/S0261-2194(00)00158-7
[7] A. Tapondjou, C. Adler, D. Fontem, H. Bouda and C. Reichmuth “Bioactivities of Cymol and Essential Oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val,” Journal Stored Products Research, Vol. 41, No. 1, 2005, pp. 91-102. doi:10.1016/j.jspr.2004.01.004
[8] L. Taiz and E. Zeiger, “Secondary Metabolites and Plant Defense,” In: L. Taiz and E. Zeiger, Ed., Plant Physiology, Sinauer Associates, Inc., Sunderland, 2006, pp. 283-308.
[9] I. Baldwin, R. Halitschke, A. Kessler and U. Schittko, “Merging Molecular and Ecological Approaches in Plant-Insect Interactions,” Current Opinion in Plant Biology, Vol. 4, No. 4, 2001, pp. 351-358. doi:10.1016/S1369-5266(00)00184-9
[10] M. De Vos, V. Van Oosten, R. Van Poecke, J. Van Pelt and M. Pozo, “Signal Signature and Transcriptome Changes of Arabidopsis during Pathogen and Insect Attack,” Molecular Plant-Microbe Interaction, Vol. 18, No. 9, 2005, pp. 923-937. doi:10.1094/MPMI-18-0923
[11] C. Voelckel, W. Weisser and I. Baldwin, “An Analysis of Plant-Aphid Interactions by Different Microarray Hybridization Strategies,” Molecular Ecology, Vol. 13, No. 10, 2004, pp. 3187-3195. doi:10.1111/j.1365-294X.2004.02297.x
[12] I. Major and C. Constabel, “Molecular Analysis of Poplar Defense against Herbivory: Comparison of Wound- and Insect Elicitor-Induced Gene Expression,” New Phytologist, Vol. 172, No. 4, 2006, pp. 617-635. doi:10.1111/j.1469-8137.2006.01877.x
[13] J. Knudsen, L. Tollsten and L. Bergstrom, “Floral Scent— A Checklist of Volatile Compounds Isolated by Head-Space Techniques,” Phytochemistry, Vol. 33, No. 2, 1993, pp. 253-280. doi:10.1016/0031-9422(93)85502-I
[14] N. Dudareva, E. Pichersky and J. Gershenzon, “Biochemistry of Plant Volatiles,” Plant Physiology, Vol. 135, No. 4, 2004, pp.1893-1902. doi:10.1104/pp.104.049981
[15] T. Bukovinszky, M. Posthumus, L. Vet and J. Lenteren, “Variation in Plant Volatiles and Attraction of the Parasitoid Diadegma semiclausum (Hellen),” Journal of Chemical Ecology, Vol. 31, No. 3, 2005, pp. 461-480. doi:10.1007/s10886-005-2019-4
[16] Y.-G. Lou, B. Ma and J.-A. Cheng, “Attraction of the Parasitoid Anagrus nilaparvatae to Rice Volatiles Induced by the Rice Brown Planthopper Nilapavata lugens,” Journal of Chemical Ecology, Vol. 31, No. 10, 2005, pp. 2357-2372. doi:10.1007/s10886-005-7106-z
[17] A. Kessler and I. Baldwin, “Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature,” Science, Vol. 291, No. 5511, 2001, pp. 2141-2144. doi:10.1126/science.291.5511.2141
[18] C. De Moraes, M. Mescher and J. Tumlinson, “Caterpillar-Induced Nocturnal Plant Volatiles Repel Nonspecific Females,” Nature, Vol. 410, No. 6828, 2001, pp. 577-580. doi:10.1038/35069058
[19] G. Arimura, C. Kost and W. Boland, “Herbivore-Induced, Indirect Plant Defences,” Biochimica et Biophysica Acta, Vol. 1734, No. 2, 2005, pp. 91-111.
[20] R. Musser, E. Farmer, M. Peiffer, S. Williams and G. Felton, “Ablation of Caterpillar Labial Salivary Glands: Technique for Determining the Role of Saliva in Insect-Plant Interactions,” Journal of Chemical Ecology, Vol. 32, No. 5, 2006, pp. 981-992. doi:10.1007/s10886-006-9049-4
[21] A. Mith?fer, G. Wanner and W. Boland, “Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. II. Continuous Mechanical Wounding Resembling Insect Feeding Is Sufficient to Elicit Herbivory-Related Volatile Emission,” Plant Physiology, Vol. 137, No. 3, 2005, pp. 1160-1168. doi:10.1104/pp.104.054460
[22] T. Olivares, “Ctenarytaina eucalypti (Maskell 1890): The Blue Gum Psyllid in Chile (Hemiptera: Sternorryncha: Psylloidea: Spondyliaspininae),” Gayana, Vol. 64, No. 2, 2000, pp. 239-241.
[23] F. Rodriguez y F. Saiz, “Parasitoidism of Psyllaephagus pilosus Noyes (Hym.: Encyrtidae) on the Blue Gum Psyllid, Ctenarytaina eucalypti (Maskell) (Hem.: Psyllidae) in V Region Eucalypts Plantations,” Chilean Journal of Agricultural Research, Vol. 66, No. 4, 2006, pp. 342-351.
[24] E. Brennan, S. Weinbaum, J. Rosenheim and R. Karban, “Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) Affects Ovipositonal and Settling Preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae),” Environmental Entomology, Vol. 30, No. 6, 2001, pp. 1144-1149. doi:10.1603/0046-225X-30.6.1144
[25] H. Ramezani, H. Singh, D. Batish and R. Kohli, “Antifungal Activity of the Volatile Oil of Eucalyptus citridora,” Fitoterapia, Vol. 73, No. 3, 2002, pp. 261-262. doi:10.1016/S0367-326X(02)00065-5
[26] G. Sacchetti, S. Maietti, M. Muzzoli, M. Scaglianti, S. Manfredini, M. Radice and R. Bruni, “Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods,” Food Chemistry, Vol. 91, No. 4, 2005, pp. 621-632. doi:10.1016/j.foodchem.2004.06.031
[27] D. Burckhardt, “Generic Key to Chilean Jumping Plant-Lice (Homoptera: Psylloidea) with Inclusion of Potential Exotic Pests,” Revista Chilena de Entomologia, Vol. 21, No. 5, 1994, pp. 57-67.
[28] P. Reymond, H. Weber, M. Damond and E. Farmer, “Differential Gene Expression in Response to Mechanical Wounding and Insect Feeding in Arabidopsis,” Plant Cell, Vol. 12, No. 5, 2000, pp. 707-720.
[29] K. Korth and R. Dixon, “Evidence for Chewing Insect-Specific Molecular Events Distinct from a General Wound Response in Leaves,” Plant Physiology, Vol. 115, No. 4, 1997, pp. 1299-1305.
[30] H. Alborn, T. Turlings, T. Jones, G. Stenhagen, J. Loughrin and J. Tumlinson, “An Elicitor of Plant Volatiles from Beet Armyworm Oral Secretion,” Science, Vol. 276, No. 5314, 1997, pp. 945-949. doi:10.1126/science.276.5314.945
[31] J. Smiley, J. Horn and N. Rank, “Ecological Effects of Salicin at Three Trophic Levels: New Problems from Old Adaptations,” Science, Vol. 229, No. 4714, 1985, pp. 649-651. doi:10.1126/science.229.4714.649
[32] J. Pasteels, M. Rowell-Rahier and M. Raupp, “Plant-Derived Defense in Chrysomelid Beetles,” In: P. Barbosa and D. K. Letourneau, Eds., Novel Aspects of Insect— Plant Interactions, John Wiley & Sons, Inc., New York, 1988, pp. 235-272.
[33] R. Denno, S. Larsson and K. Olmstead, “Role of Enemy Free Space and Plant Quality in Host-Plant Selection by Willow Beetles,” Ecology, Vol. 71, No. 1, 1990, pp. 124-137. doi:10.2307/1940253
[34] M. Jacobson, “Glossary of Plant-Derived Insect Deterrents,” 1990.
[35] M. Leyva, J. Tacoronte, M. Marquetti and D. Montada, “Insecticidal Activity of 3 Essential Oils of Plants in Domestic Musca (Diptera: Muscidae),” Revista Cubana de Medicina Tropical, Vol. 60, No. 3, 2008.
[36] A. Janmaat, W. Jan de Kogel and E. Woltering, “Enhanced Fumigant Toxicity of p-Cymene against Frankliniella occidentalis by Simultaneous Application of Elevated Levels of Carbon Dioxide,” Pest Management Science, Vol. 58, No. 2, 2002, pp. 167-173. doi:10.1002/ps.432
[37] G. Corrado, R. Sasso, M. Pasquariello, L. Iodice, A. Carretta, P. Cascone, L. Ariati, M. Digilio, E. Guerrieri and R. Rao, “Systemin Regulates Both Systemic and Volatile Signaling in Tomato Plants,” Journal of Chemical Ecology, Vol. 33, No. 4, 2007, pp. 669-681. doi:10.1007/s10886-007-9254-9
[38] B. Joseph, and R. Priya, “Phytochemical and Biopharmaceutical Aspects of Psidium guajava (L.) Essential Oil: A Review,” Research Journal of Medicinal Plant, Vol. 5, No. 4, 2011, pp. 432-442. doi:10.3923/rjmp.2011.432.442
[39] R. Halitschke, U. Schittko, G. Pohnert, W. Boland and I. Baldwin, “Molecular Interactions between the Specialist Herbivore Manduca Sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. III. Fatty Acid-Amino Acid Conjugates in Herbivore Oral Secretions Are Necessary and Sufcient for Herbivore-Specific Plant Responses,” Plant Physiology, Vol. 125, No. 2, 2011, pp. 711-717. doi:10.1104/pp.125.2.711
[40] E. Schmelz, M. Carroll, S. Leclere, S. Phipps and J. Meredith, “Fragments of ATP Synthase Mediate Plant Perception of Insect Attack,” Proceedings of the National Academy of Sciences USA, Vol. 103, No. 23, 2006, pp. 8894-8899. doi:10.1073/pnas.0602328103

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.