Build mutant and build homology protein structure predictions for indonesian avian influenza neuraminidase

Abstract

Protein structure modeling using a homologous template is one of many routines that accompany the molecular dynamics simulation for biological material. There are currently two protocols of protein modeling available in Accelrys Discovery Studio 2.1, Build Mutants and Build Homology Modeling protocols. Both are template-based modeling, but with a different process. In this study, two different templates, 3CKZ and 274Y, have been used to see how much the differences will be made by those two protocols if the templates has significant percentage of identity. Evaluation of structure models has been performed using DOPE score, 3D-profile, and PROCHECK. The results indicated that Build Mutants Protocols produces more stable structures but has a low reliability values and low quality of stereochemistry when using a template that has a lower percentage of identity. The results also yield more stable, reliable, and higher percentage of residues in most favoured and additionally allowed region for the usage of Build Homology Modeling Protocol on both templates. These observations suggest that Build Homology Modeling protocol is recommended for protein modeling.

Share and Cite:

Jaya Herlambang, S. and Saleh, R. (2012) Build mutant and build homology protein structure predictions for indonesian avian influenza neuraminidase. Journal of Biophysical Chemistry, 3, 183-190. doi: 10.4236/jbpc.2012.32020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kendrew, J. C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H. and Phillips, D.C. (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 181, 662-666. doi:10.1038/181662a0
[2] http://www.rcsb.org/pdb/statistics/holdings.do
[3] Sali, A., Pottertone, L., Yuan, F., Van Vlijmen, H. and Karplus, M. (1995) Evaluation of comparative protein modeling by MODELLER. Proteins, 23, 318-326. doi:10.1002/prot.340230306
[4] Lesk, A.M. and Chothia, C. (1986) The response of protein structures to amino-acid sequence changes. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 317, 345-356. doi:10.1098/rsta.1986.0044
[5] Johnson, M.S., Srinivasan, N., Sowdhamini, R. and Blundell, T.L. (1994) Knowledge-based protein modeling. Critical Reviews in Biochemistry and Molecular Biology, 29, 168. doi:10.3109/10409239409086797
[6] Congreve, M., Murray, C.W. and Blundell, T.L. (2005) Keynote review: Structural biology and drug discovery. Drug Discovery Today, 10, 895-907. doi:10.1016/S1359-6446(05)03484-7
[7] http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
[8] Herlambang, S. J. and Saleh, R. (2011) Indonesian avian influenza H274Y mutant neuraminidase homology models assessment. Journal of Biophysical Chemistry, 2, 345-352. doi:10.4236/jbpc.2011.23039
[9] http://www.pdb.org/pdb/home/home.do
[10] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. doi:10.1093/nar/25.17.3389
[11] Zdobnov, E.M. and Apweiler, R. (2001) InterProScan—An integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17, 847-848. doi:10.1093/bioinformatics/17.9.847
[12] Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006) The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22, 195-201. doi:10.1093/bioinformatics/bti770
[13] Kiefer, F., Arnold, K., Künzli, M., Bordoli, L. and Schwede, T. (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Research, 37, 387-392. doi:10.1093/nar/gkn750
[14] Schwede, T., Kopp, J., Guex, N. and Peitsch, M.C. (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381-3385. doi:10.1093/nar/gkg520
[15] Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modelling. Electrophoresis, 18, 2714-2723. doi:10.1002/elps.1150181505
[16] Peitsch, M.C. (1995) Protein modeling by E-mail (From amino acid sequence to protein structure: A free one-hour service). Nature Biotechnology, 13, 658-660. doi:10.1038/nbt0795-658
[17] Brooks, B.R., Bruccoleri, R.E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983) CHARMM: A program for macromolecular energy minimization and dynamics calculations. Journal of Computational Chemistry, 4, 187-217. doi:10.1002/jcc.540040211
[18] Brooks, B.R., et al. (2009) CHARMM: The Biomolecular Simulation Program. Journal of Computational Chemistry, 30, 1545-1614.
[19] Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22, 4673-4680. doi:10.1093/nar/22.22.4673
[20] Henikoff, S. and Henikoff, J.G. (1992) Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the USA, 89, 10915-10919. doi:10.1073/pnas.89.22.10915
[21] Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577-2637. doi:10.1002/bip.360221211
[22] Shen, M.-Y. and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Science, 15, 2507-2524.
[23] Lüthy, R., Bowie, J.U. and Eisenberg, D. (1992) Assessment of protein models with three-dimensional profiles. Nature, 356, 83-85. doi:10.1038/356083a0
[24] Ramachandran, G. N., Ramakrishnan, C. and Sasisekharan, V. (1963) Stereochemistry of polypeptide chain configuretions. Journal of Molecular Biology, 7, 95-99. doi:10.1016/S0022-2836(63)80023-6
[25] Kabsch, W. and Sander, C. (1983) Biopolymers Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577-2637. doi:10.1002/bip.360221211
[26] Fiser, R.K. and Sali, A. (2000) Modeling of loops in protein structures. Protein Science, 9, 1753-1773. doi:10.1110/ps.9.9.1753
[27] Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283-291. doi:10.1107/S0021889892009944
[28] Morris, A.L., MacArthur, M.W., Hutchinson, E.G. and Thornton, J.M. (1992) Proteins: Structure, Function, and Bioinformatics. Biochemistry and Molecular Biology, 12, 345-364.
[29] Chothia, C. and Lesk A.M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO Journal, 5, 823-826.
[30] Aloy, P., Ceulemans, H., Stark, A. and Russel, R.B. (2003) The relationship between sequence and interaction divergence in proteins. Journal of Molecular Biology, 332, 989-998. doi:10.1016/j.jmb.2003.07.006
[31] Huang, C.W., Chen, Y.H., Chen, Y.H., Tsai, Y.C. and Lee, H.J. (2009) The interacton of Glu294 at the subunit interface is important for the activity and stability of goose δ-crystallin. Molecular Vision, 15, 2358-2363.
[32] Kumar, M., Agarwal, T., Khokhar, S., Kumar, M., Kaur, P., Roy, T.S. and Dada, R. (2011) Mutation screening and genotype phenotype correlation of a-crystallin, g-crystallin and GJA8 gene in congenital cataract. Molecular Vision, 17, 693-707.
[33] Biswas, D., Gupta, S.K., Sindhwani and Patras, A. (2009) TLR2 polymorphisms, Arg753GLn and Arg677Trp, are not associated with increased burden of tuberculosis in Indian patients. BMC Research Notes, 2, 162-167.
[34] Zhang, J., Xue, F. and Chang, Y. (2008) Structural Determinants for Antagonist Pharmacology That Distinguish the ρ1GABAC Receptor from GABAA Receptor. Molecular Pharmacology, 74, 941-951. doi:10.1124/mol.108.048710
[35] Patel, A., Dewangan, R., Khatri, S., Choubey, J., Gupta, S.K. and Verma, M.K. (2009) Identification of insilico 3D structure of amylase (Drosophila melanogaster) and comparative computational studies. Journal of Engineering and Technology Research, 1, 39-45.
[36] Khatri, S., Patel, S., Choubey, J., Gupta, S.K. and Verma, M.K. (2010) Insilico 3D structure prediction of cell membrane associated protein ninjurin (homosapiens). Current Research Journal of Biological Sciences, 2, 1-5.
[37] Satpathy, R., Guru, R.K., Behera, R. and Priyadarshini, A. (2010) Homology modelling of lycopene cleavage oxygenase: The key enzyme of bixin production. Journal of Computer Science of System Biology, 3, 59-61.
[38] Singh, S., Kumar, A., Patel, A., Tripathi, A., Kumar, D. and Verma, D. (2010) In silico 3D structure prediction and comparison of nucleocapsid protein of H1N1. Journal of Modelling and Simulation of Systems, 1, 108-111.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.