Photoelectrochemical and Spectroscopic Studies of Colloidal Nano-Particles of Mixed TiO2/V2O5 Metal-Oxide Semiconductors

DOI: 10.4236/msa.2012.35039   PDF   HTML     3,818 Downloads   6,320 Views   Citations


Due to its importance in hydrogen production during the photolysis process of aqueous suspensions process, mixed TiO2/V2O5 metal-oxide semiconductors were prepared and subjected to crystal structure investigation using X-ray technique. The photoelectrochemical behavior of these TiO2/V2O5 was investigated by photolysis of aqueous suspensions of these oxides containing [Fe(CN)6]4-. X-ray diffraction analysis indicated that the TiO2 crystallites grow in the (1 0 1) direction, while The V2O5 crystallites seem to be growing in the (4 2 0) direction, with increasing concentration of V2O5. Photolysis studies show that photochemical activities that maintained the [Fe(CN)6]4/[Fe(CN)6]3- redox reversibility increased by increasing V2O5 up to 50% and then decreased at greater percentages. Aqueous nano systems used in these studies retained their stability as indicated by the reproducibility of their photo-catalytic activities.

Share and Cite:

K. K. Kasem, A. Finley, J. Folberth, M. Syed and E. Kirkpatrick, "Photoelectrochemical and Spectroscopic Studies of Colloidal Nano-Particles of Mixed TiO2/V2O5 Metal-Oxide Semiconductors," Materials Sciences and Applications, Vol. 3 No. 5, 2012, pp. 265-271. doi: 10.4236/msa.2012.35039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Martel, C. Nguyen, Hoan and J. Weiss, “Process for the Production of Hydrogen from an Aqueous Medium,” France Patent No. 2940263, 2010.
[2] V. M. Aroutiounian, V. M. Arakelyan and G. E. Shahnazaryan, “Metal Oxide Photoelectrodes for Hydrogen Generation Using Solar Radiation-Driven Water Splitting,” Solar Energy, Vol. 78, No. 5, 2005, pp. 581-592. doi:10.1016/j.solener.2004.02.002
[3] M. Kaneko, H. Ueno, R. Saito, S. Yamaguchi, Y. Fujii and J. Nemoto, “UV Light-Activated Decomposition/ Cleaning of Concentrated Biomass Wastes Involving also Solid Suspensions with Remarkably High Quantum Efficiency,” Applied Catalysis B: Environmental, Vol. 91, No. 1-2, 2009, pp. 254-261. doi:10.1016/j.apcatb.2009.05.033
[4] K. K. Kasem and M. Dahn, “Photodissociation of Water Using Colloidal Nanoparticles of Doped Titanium (IV) Oxide Semiconductors for Hydrogen Production,” Current Science, Vol. 99, No. 8, 2010, pp. 1068-1073.
[5] C. E. Jones and L. J. Carpenter, “Solar Photolysis of CH2I2, CH2ICl, and CH2IBr in Water, Saltwater, and Seawater,” Environmental Science and Technology, Vol. 39, No. 16, 2005, pp. 6130-6137. doi:10.1021/es050563g
[6] V. M. Daskalaki, P. Panagiotopoulou and D. I. Kondarides, “Production of Peroxide Species in Pt/TiO2 Suspensions under Conditions of Photocatalytic Water Splitting and Glycerol Photoreforming,” Chemical Engineering Journal, Vol. 170, No. 2-3, 2011, pp. 433-439. doi:10.1016/j.cej.2010.11.093
[7] K. K. Kasem, M. Dahn and N. Zia, “Photolysis of Aqueous Colloidal Zinc Oxide Nanoparticles for Hydrogen Production,” CACS Communications, Vol. 4, No. 1, 2010, pp. 13-17.
[8] A. Patsoura, D. I. Kondarides and X. E. Verykios, “EnHancement of Photoinduced Hydrogen Production from Irradiated Pt/TiO2 Suspensions with Simultaneous Degradation of Azo-Dyes,” Applied Catalysis B: Environmental, Vol. 64, No. 3-4, 2006, pp. 171-179. doi:10.1016/j.apcatb.2005.11.015
[9] K. Pechstedt, T. Whittle, J. Baumberg and T. Melvin, “Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules,” Journal of Physical Chemistry C, Vol. 114, No. 28, 2010, pp. 12069-12077. doi:10.1021/jp100415k
[10] M. Graetzel, “Nanocrystalline Electronic Junctions,” In: P. V. Kamat and D. Meisel, Eds., Semiconductor Nanoclusters—Physical, Chemical and Catalytic Aspects, Elsevier, Amsterdam, 1997, p. 353.
[11] K. R. Goidas, M. Bohorques and P. V. Kamat, “Photophysical and Photochemical Aspects of Coupled Semiconductors: Charge-Transfer Processes in Colloidal Cadmium Sulfide-Titania and Cadmium Sulfide-Silver(I) Iodide Systems,” Journal of Physical Chemistry B, Vol. 94, , No. 16, 1990, pp. 6435-6440. doi:10.1021/j100379a051
[12] R. Vogel, K. Pohl and H. Weller, “Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS,” Chemical Physics Letters, Vol. 174, No. 3-4, 1990, pp. 241-246. doi:10.1016/0009-2614(90)85339-E
[13] S. Kohtani, A. Kudo and T. Sakata, “Spectral Sanitization of TiO2 Semiconductor Electrode by CdS Microcrystals, and Its Photoelectrochemical Properties,” Chemical Physics Letters, Vol. 206, No. 1-4, 1993, pp. 166-170. doi:10.1016/0009-2614(93)85535-V
[14] R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors,” Journal of Physical Chemistry, Vol. 98, No. 12, 1994, pp. 3183-3188. doi:10.1021/j100063a022
[15] R. Plass, S. Pelet, J. Krueger, M. Gratzel and U. Bach, “Quantum Dot Sensitization of Organic?Inorganic Hybrid Solar Cells,” Journal of Physical Chemistry B, Vol. 106, No. 31, 2002, pp. 7578-7580. doi:10.1021/jp020453l
[16] L. M. Peter, K. G. U. Wijayantha, D. J. Riley and J. P. Waggett, “Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used to Photosensitize Nanocrystalline TiO2,” Journal of Physical Chemistry B, Vol. 107, No. 33, 2003, pp. 8378-8381. doi:10.1021/jp030334l
[17] S. Gordon, E. J. Hars, M. S. Matheson, J. Rahani and J. K. Thomas, “Reaction Constant of Hydrated Electrons,” Journal of the American Chemical Society, Vol. 85, No. 10, 1963, pp. 1375-1377. doi:10.1021/ja00893a002
[18] A. Ookubo, E. Kanezaki and K. Ooi and Langmuir, “ESR, XRD, and DRS Studies of Paramagnetic Titanium(3+) Ions in a Colloidal Solid of Titanium Oxide Prepared by the Hydrolysis of Titanium Trichloride,” Langmuir, Vol. 6, No. 1, 1990, p. 206.
[19] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review Letters, Vol. 56, No. 10, 1939, pp. 978-982. doi:10.1103/PhysRev.56.978
[20] R. A. Van leeuwen, C.-J. Hung, D. R. Kammler and J. A. Switzer, “Optical and Electronic Transport Properties of Electrodeposited Thallium (III) Oxide Films,” Journal of Physical Chemistry, Vol. 99, No. 41, 1995, pp. 15247-15252. doi:10.1021/j100041a047
[21] S. Kumari, C. Tripathi, A. P. Singh1, D. Chauhan, R. Shrivastav, S. Dass and V. R. Satsangi, “Characterization of Zn-Doped Hematite Thin Films for Photoelectrochemical Splitting of Water,” Current Science, Vol. 91 No. 8, 2006, pp. 1062-1064.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.