Synthesis and Characterization of GaN Rods Prepared by Ammono-Chemical Vapor Deposition

Abstract

GaN rods were deposited by chemical vapor deposition (CVD) onto sapphire (0 0 0 1) and amorphous quartz. The reactive Ga species in vapor the phase was formed with NH4Cl and gallium. The unidirectional growth was catalyzed with gold nanoparticles formed onto the substrate prior to the CVD reaction in order to induce a vapor-liquid-solid (VLS) mechanism. However, this method of synthesis seems to be influenced by other growth mechanisms which formed additional depositions of GaN with different morphology than the rods catalyzed by gold nanoparticles. The moieties of GaN that grew in the absence of gold formed branches in the rods or increased the lateral growth of rods resulting in larger diameters than the size of the gold particle that guided the growth.

Share and Cite:

Guadalupe Carbajal Arízaga, G. , Viridiana Chávez Hernández, K. , Cayetano Castro, N. , Herrera Zaldivar, M. , García Gutiérrez, R. and Edel Contreras López, O. (2012) Synthesis and Characterization of GaN Rods Prepared by Ammono-Chemical Vapor Deposition. Advances in Chemical Engineering and Science, 2, 292-299. doi: 10.4236/aces.2012.22034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Estephan, et al., “Tailoring GaN Semiconductor Surfaces with Biomolecules,” Journal of Physical Chemistry B, Vol. 112, No. 29, 2008, pp. 8799-8805. doi:10.1021/jp804112y
[2] M. He, et al., “Growth of GaN Nanowires by Direct Reaction of Ga with NH3,” Journal of Crystal Growth, Vol. 231, No. 3, 2001, pp. 357-365. doi:10.1016/S0022-0248(01)01466-X
[3] D. Ehrentraut, et al., “Physico-Chemical Features of the Acid Ammonothermal Growth of GaN,” Journal of Crystal Growth, Vol. 310, No. 5, 2008, pp. 891-895. doi:10.1016/j.jcrysgro.2007.11.090
[4] R. Garcia, A. C. Thomas and F. Ponce, “Measurement of the Solubility of Ammonia and Nitrogen in Gallium at Atmospheric Pressure,” Journal of Crystal Growth, Vol. 467, No. 1-2, 2008, pp. 3131-3134. doi:10.1016/j.jcrysgro.2008.03.030
[5] G. G. C. Arízaga, et al., “Influence of Reaction Conditions on the Growth of GaN Rods in an Ammono-CVD Reactor,” Journal of Crystal Growth, Vol. 319, No. 1, 2011, pp. 19-24. doi:10.1016/j.jcrysgro.2011.01.103
[6] S. N. Mohammad, “Why Droplet Dimension Can Be Larger than, Equal to, or Smaller than the Nanowire Dimension,” Journal of Applied Physics, Vol. 106, 2009, Article ID: 104311, pp. 1-11.
[7] A. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, Vol. 279, No. 5348, 1998, pp. 208-211. doi:10.1126/science.279.5348.208
[8] X. Duan and C. M. Lieber, “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires,” Journal of the American Chemical Society, Vol. 122, No. 1, 2000, pp. 188-189. doi:10.1021/ja993713u
[9] L. Yu, Y. Ma and Z. Hu, “Low-Temperature CVD Synthesis Route to GaN Nanowires on Silicon Substrate,” Journal of Crystal Growth, Vol. 310, No. 24, 2008, pp. 5237-5240. doi:10.1016/j.jcrysgro.2008.09.191
[10] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Applied Physics Letters, Vol. 4, No. 89, 1964, pp. 89-90. doi:10.1063/1.1753975
[11] V. Gottschalch, et al., “VLS Growth of GaN Nanowires on Various Substrates,” Journal of Crystal Growth, Vol. 310, No. 23, 2008, pp. 5123-5128. doi:10.1016/j.jcrysgro.2008.08.013
[12] P. Purdy, “Ammonothermal Synthesis of Cubic Gallium Nitride,” Chemistry of Materials, Vol. 11, No. 7, 1999, pp. 1648-1651. doi:10.1021/cm9901111
[13] T. Hashimoto, et al., “Growth of Gallium Nitride via Fluid Transport in Supercritical Ammonia,” Journal of Crystal Growth, Vol. 275, No. 1-2, 2005, pp. e525-e530. doi:10.1016/j.jcrysgro.2004.11.024
[14] G.G.C. Arizaga, et al., “Reversible Intercalation of Ammonia Molecules into a Layered Double Hydroxide Structure without Exchanging Nitrate Counter-Ions,” Journal of Solid State Chemistry, Vol. 183, No. 10, 2010, pp. 2324-2328. doi:10.1016/j.jssc.2010.07.050
[15] Image Tool Version 3.0. http://ddsdx.uthscsa.edu/dig/itdesc.html
[16] Ch.Y. Chang, et al., “Control of Nucleation Site Density of GaN Nanowires,” Applied Surface Science, Vol. 253, No. 6, 2007, pp. 3196-3200. doi:10.1016/j.apsusc.2006.07.007
[17] Ch. Cao, X. Xiang and H. Zhu, “High-Density, Uniform Gallium Nitride Nanorods Grown on Au-Coated Silicon Substrate,” Journal of Crystal Growth, Vol. 273, No. 3-4, 2005, pp. 375-380. doi:10.1016/j.jcrysgro.2004.09.050
[18] S. E. Alexandrov, A. Y. Kovalginy and D. M. Krasovitskiy, “A Study of CVD of Gallium Nitride Films by in-Situ Gas-Phase UV Spectroscopy,” Journal de Physique IV, Vol. 5, No. C5, 1995, pp. 183-190. doi:10.1051/jphyscol:1995520
[19] Data Collection of the Joint Committee on Powder Diffraction Standard, PCPDFWIN Version 2.2, June 2001.
[20] Y. H. Ra, et al., “The Influence of the Working Pressure on the Synthesis of GaN Nanowires by Using MOCVD,” Journal of Crystal Growth, Vol. 312, No. 6, 2010, pp. 770-774. doi:10.1016/j.jcrysgro.2009.12.056
[21] R. Navamathavan, et al., “Different Growth Behaviors of GaN Nanowires Grown with Au Catalyst and Au + Ga Solid Solution Nano-Droplets on Si(111) Substrates by Using MOCVD,” Current Applied Physics, Vol. 11, No. 1, 2011, pp. 77-81. doi:10.1016/j.cap.2010.06.022
[22] D. S. Chander, J. Ramkumar and S. Dhamodaran, “Controlled 1-D to 3-D Growth Mode Transition of GaN Nanostructures and Their Optical Properties,” Physica E, Vol. 4. No. 9, 2011, pp. 1683-1687. doi:10.1016/j.physe.2011.05.022
[23] Y. H. Cho, et al., “Optical Properties of Laterally Overgrown GaN Pyramids Grown on (111) Silicon Substrate,” Current Applied Physics, Vol. 2, No. 6, 2002, pp. 515-519. doi:10.1016/S1567-1739(02)00168-2
[24] S. Q. Zhou, et al., “Comparison of the Properties of GaN Grown on Complex Si-Based Structures,” Applied Physics Letters, Vol. 86, No. 8, 2005, Article ID: 081912, pp. 1-3. doi:10.1063/1.1868870
[25] A. N. Red’kin, et al., “Chemical Vapor Deposition of GaN from Gallium and Ammonium Chloride,” Inorganic Materials, Vol. 40, No. 10, 2004, pp. 1049-1053. doi:10.1023/B:INMA.0000046466.62619.e9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.