Nanomechanical Analysis of Hybrid Silicones and Hybrid Epoxy Coatings—A Brief Review
Atul Tiwari
.
DOI: 10.4236/aces.2012.21005   PDF    HTML   XML   8,825 Downloads   16,571 Views   Citations

Abstract

This review article is written on the investigations of nanomechanical properties of coatings by using nanoindentation techniques. The focus is on the studies that were conducted on epoxy polymer, silicones and their hybrid materials. The article describes a large number of developmental studies that are conducted on coatings. Materials properties such as nanoindentation hardness, modulus, scratch, wear and viscoelastic behavior have been described. Moreover, the article summarizes various studies that mention the use of different nanoparticles in coating formulations that could improve the mechanical strength and service life span of the coatings. The mode and mechanism of material’s failure has been outlined and discussed.

Share and Cite:

A. Tiwari, "Nanomechanical Analysis of Hybrid Silicones and Hybrid Epoxy Coatings—A Brief Review," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 34-44. doi: 10.4236/aces.2012.21005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. M. Hutchungs, “The Contributions of David Tabor to the Science of Indentation Hardness,” Journal of Materials Research, Vol. 24, No. 3, 2009, pp. 581-589. doi:10.1557/jmr.2009.0085
[2] A. C. Fischer-Cripps, “Nanoindentation,” 2nd Edition, In: F. F. Ling, Ed., Springer-Verlag, New York, 2004, p. 266.
[3] T. Y. TSui, C. A. Ross and G. M. Pharr, “Nanoindentation Hardness of Soft Films on Hard Substrates: Effects of Substrates,” Materials Research Society Symposium Proceedings, Vol. 473, 1997, p. 57.
[4] S. Chen, L. Liu and T. Wang, “Investigation of the Mechanical Properties of Thin Films by Nanoindentation, Considering the Effects of Thickness and Different Coating-Substrate Combinations,” Surface and Coatings Technology, Vol. 191, No. 1, 2005, pp. 25-32. doi:10.1016/j.surfcoat.2004.03.037
[5] C. Charitidis, A. Laskarakis, S. Kassavetis, C. Gravalidis, and S. Logothetidis, “Optical and Nanomechanical Study of Anti-Scratch Layers on Polycarbonate Lenses,” Superlattices and Microstructures, Vol. 36, No. 1-3, pp. 171- 179. doi:10.1016/j.spmi.2004.08.015
[6] S. Roche, S. Pavan, J. L. Loubet, P. Barbeau and B. Magny, “Influence of the Substrate Characteristics on the Scratch and Indentation Properties of UV-Cured Clearcoats,” Progress in Organic Coatings, Vol. 47, No. 1, 2003, pp. 37-48. doi:10.1016/S0300-9440(03)00017-1
[7] K. Geng, F. Yang and E. A. Grulke, “Nanoindentation of Submicron Polymeric Coating Systems,” Materials Science and Engineering: A, Vol. 479, No. 1-2, 2008, pp. 157-163. doi:10.1016/j.msea.2007.06.042
[8] T. H. Zhang and Y. Huan, “Nanoindentation and Nanoscratch Behaviors of DLC Coatings on Different Steel Substrates,” Composites Science and Technology, Vol. 65, No. 9, 2005, pp. 1409-1413. doi:10.1016/j.compscitech.2004.12.011
[9] X. Li and B. Bhushan, “A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications,” Materials Characterization, Vol. 48, No. 1, 2002, pp. 11-36.
[10] M. R. VanLandingham, J. S. Villarrubia and G. F. Meyers, “Nanoindentation of Polymers: Overview,” Polymer Preprints, Vol. 41, No. 2, 2000, pp. 1412-1413.
[11] J.V. Koleske, “Mechanical Properties of Solid Coatings,” Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., New York, 2006.
[12] F. Mammeri, E. Le Bourhis, L. Rozes and C. Sanchez, “Mechanical Properties of Hybrid Organic-Inorganic Materials,” Journal of Materials Chemistry, Vol. 15, No. 35-36, 2005, pp. 3787-3811. doi:10.1039/b507309j
[13] M. R. VanLandingham, “Review of Instrumented Indentation,” Journal of Research of the National Institute of Standards and Technology, Vol. 108, No. 4, 2003, pp. 249-265.
[14] A.C. FischerCripps, “Critical review of analysis and interpretation of nanoindentation test data,” Surface and Coatings Technology, Vol. 200, No. 14-15, 2006, pp. 4153-4165. doi:10.1016/j.surfcoat.2005.03.018
[15] S. J. Bull, “Nanoindentation of Coatings,” Journal of Physics D: Applied Physics, Vol. 38, No. 24, 2005, pp. R393-R413. doi:10.1088/0022-3727/38/24/R01
[16] J. L. Hay and G. M. Pharr, “Instrumented Indentation Testing,” ASM Handbook, Mechanical Testing and Evaluation, ASM International, 2000, pp. 232-243.
[17] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, No. 6, 1992, pp. 1564-1583. doi:10.1557/JMR.1992.1564
[18] E. G. Herbert, W. C. Oliver and G. M. Pharr, “Nanoindentation and the Dynamic Characterization of Viscoelastic solids,” Journal of Physics D: Applied Physics, Vol. 41, No. 7, 2008, Article ID: 074021. doi:10.1088/0022-3727/41/7/074021
[19] G. M. Odegard, T. S. Gates and H. M. Herring, “Characterization of Viscoelastic Properties of Polymeric Materials through Nanoindentation,” Experimental Mechanics, Vol. 45, No. 2, 2005, pp. 130-136. doi:10.1007/BF02428185
[20] P. Davies, L. Sohier, J. Y. Cognard, A. Bourmaud, D. Choqueuse, E. Rinnert and R. Créac'hcadec, “Influence of Adhesive Bond Line Thickness on Joint Strength,” International Journal of Adhesion and Adhesives, Vol. 29, No. 7, 2009, pp. 724-736. doi:10.1016/j.ijadhadh.2009.03.002
[21] X. Shi, T. A. Nguyen, Z. Suo, Y. Liu and R. Avci, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating,” Surface and Coatings Technology, Vol. 204, No. 3, 2009, pp. 237-245. doi:10.1016/j.surfcoat.2009.06.048
[22] R. S. C. Woo, H. Zhu, C. K. Y. Leung and J. K. Kim, “Environmental Degradation of Epoxy-Organoclay Nanocomposites Due to UV Exposure: Part II Residual Mechanical Properties,” Composites Science and Technology, Vol. 68, No. 9, 2008, pp. 2149-2155. doi:10.1016/j.compscitech.2008.03.020
[23] X. F. Li, K. T. Lau and Y. S. Yin, “Mechanical Properties of Epoxy-Based Composites Using Coiled Carbon Nanotubes,” Composites Science and Technology, Vol. 68, No. 14, 2008, pp. 2876-2881. doi:10.1016/j.compscitech.2007.10.019
[24] P. Kardar, M. Ebrahimi and S. Bastani, “Study the Effect of Nano-Alumina Particles on Physical-Mechanical Properties of UV Cured Epoxy Acrylate via Nano-Indentation,” Progress in Organic Coatings, Vol. 62, No. 3, 2008, pp. 321-325. doi:10.1016/j.porgcoat.2008.01.015
[25] L. Y. L. Wu, E. Chwa, Z. Chen and X. T. Zeng, “A Study towards Improving Mechanical Properties of Sol-Gel Coatings for Polycarbonate,” Thin Solid Films, Vol. 516, No. 6, 2008, pp. 1056-1062. doi:10.1016/j.tsf.2007.06.149
[26] S. Turri, L. Torlaj, F. Piccinini and M. Levi, “Abrasion and Nanoscratch in Nanostructured Epoxy Coatings,” Journal of Applied Polymer Science, Vol. 118, No. 3, 2010, pp. 1720-1727.
[27] A. Tiwari, “Nanomechanical Properties of Hybrid Nanocoatings,” Mechanal Engineering, University of Hawaii, Honolulu, 2011, p. 148.
[28] L. Chang, Z. Zhang, C. Breidt and K. Friedrich, “Tribological Properties of Epoxy Nanocomposites: I. Enhancement of the Wear Resistance by Nano-TiO2 Particles,” Wear, Vol. 258, No. 1-4, 2005, pp. 141-148. doi:10.1016/j.wear.2004.09.005
[29] L. Chang and Z. Zhang, “Tribological Properties of Epoxy Nanocomposites: Part II. A Combinative Effect of Short Carbon Fibre with Nano-TiO2,” Wear, Vol. 260, No. 7-8, 2006, pp. 869-878. doi:10.1016/j.wear.2005.04.002
[30] L. Chang, Z. Zhang, L. Ye and K. Friedrich, “Tribological Properties of Epoxy Nanocomposites: III. Characteristics of Transfer Films,” Wear, Vol. 262, No. 5-6, 2007, pp. 699-706. doi:10.1016/j.wear.2006.08.002
[31] Y.-F. Zhang, S.-L. Bai, X.-K. Li and Z. Zhang, “Viscoelastic Properties of Nanosilica-Filled Epoxy Composites Investigated by Dynamic Nanoindentation,” Journal of Polymer Science Part B: Polymer Physics, Vol. 47, No. 10, 2009, pp. 1030-1038. doi:10.1002/polb.21709
[32] Y.-F. Zhang, S.-L. Bai, D.-Y. Yang, Z. Zhang and S. Kao-Walter, “Study on the Viscoelastic Properties of the Epoxy Surface by Means of Nanodynamic Mechanical Analysis,” Journal of Polymer Science Part B: Polymer Physics, Vol. 46, No. 3, 2008, pp. 281-288. doi:10.1002/polb.21365
[33] L. Hu, X. Zhang, Y. Sun and R. J. J. Williams, “Hardness and Elastic Modulus Profiles of Hybrid Coatings,” Journal of Sol-Gel Science and Technology, Vol. 34, 2005, pp. 41-46. doi:10.1007/s10971-005-1260-1
[34] B. D. Fabes and W. C. Oliver, “Mechanical Properties of Sol-Gel Coatings,” Journal of Non Crystalline Solids, Vol. 121, No. 1-3, 1990, pp. 348-356. doi:10.1016/0022-3093(90)90157-H
[35] G. W. Scherer, “Drying Gels: II. Film and Flat Plate,” Journal of Non Crystalline Solids, Vol. 89, No. 1-2, 1987, pp. 217-238. doi:10.1016/S0022-3093(87)80334-4
[36] A. J. Atanacio, B. A. Latella, C. J. Barbe and M. V. Swain, “Mechanical Properties and Adhesion Characteristics of Hybrid Sol-Gel Thin Films,” Surface and Coating Technology, Vol. 192, 2005, pp. 354-364. doi:10.1016/j.surfcoat.2004.06.004
[37] A. Tiwari and L. H. Hihara, “Novel Silicone Ceramer Coatings for Aluminum Protection,” In: A. S. H. Makhlouf, Ed., High Performance Coatings for Automotive and Aerospace Industries, Nova Publishers, New York, 2010, p. 413.
[38] A. Tiwari and L. H. Hihara, “High Performance Reaction-Induced Quasi-Ceramic Silicone Conversion Coating for Corrosion Protection of Aluminium Alloys,” Progress in Organic Coatings, Vol. 69, No. 1, 2010, pp. 16-25. doi:10.1016/j.porgcoat.2010.04.020
[39] A. Tiwari, J. Zhu and L. H. Hihara, “The Development of Low Temperature Hardening Silicone Ceramer Coatings for Corrosion Protection of Metals,” Surface and Coatings Technology, Vol. 202, No. 19, 2008, pp. 4620-4635. doi:10.1016/j.surfcoat.2008.03.030
[40] S. Etienne-Calas, A. Duri and P. Etienne, “Fracture Study of Organic-Inorganic Coatings Using Nanoindentation Technique,” Journal of Non-Crystalline Solids, Vol. 344, No. 1-2, 2004, pp. 60-65. doi:10.1016/j.jnoncrysol.2004.07.029
[41] S. M. Mirabedini, M. Mohseni, S. PazokiFard and M. Esfandeh, “Effect of TiO2 on the Mechanical and Adhesion Properties of RTV Silicone Elastomer Coatings,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 317, No. 1-3, 2008, pp. 80-86. doi:10.1016/j.colsurfa.2007.09.044
[42] W. Tanglumlert, P. Prasassarakich, P. Supaphol and S. Wongkasemjit, “Hard-Coating Materials for Poly(Methyl methacrylate) from Glycidoxypropyltrimethoxysilane-Modified Silatrane via a Sol-Gel Process,” Surface and Coatings Technology, Vol. 200, No. 8, 2006, pp. 2784- 2790. doi:10.1016/j.surfcoat.2004.11.018
[43] A. J. Atanacio, B. A. Latella, C. J. Barbé and M. V. Swain, “Mechanical Properties and Adhesion Characteristics of Hybrid Sol-Gel Thin Films,” Surface and Coatings Technology, Vol. 192, No. 2-3, 2005, pp. 354-364. doi:10.1016/j.surfcoat.2004.06.004
[44] A. Ferchichi, S. Calas-Etienne, M. Sma?hi and P. Etienne, “Study of the Mechanical Properties of Hybrid Coating as a Function of Their Structures Using Nanoindentation,” Journal of Non-Crystalline Solids, Vol. 354, No. 2-9, 2008, pp. 712-716.
[45] M. Esfandeh, S. M. Mirabedini, S. Pazokifard and M. Tari, “Study of Silicone Coating Adhesion to an Epoxy Undercoat Using Silane Compounds: Effect of Silane Type and Application Method,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 302, No. 1-3, 2007, pp. 11-16. doi:10.1016/j.colsurfa.2007.01.031
[46] J. G. Kohl, I. L. Singer, N. Schwarzer and V. Y. Yu, “Effect of Bond Coat Modulus on the Durability of Silicone Duplex Coatings,” Progress in Organic Coatings, Vol. 56, No. 2-3, 2006, pp. 220-226. doi:10.1016/j.porgcoat.2006.05.005
[47] J. G. Kohl and I. L. Singer, “Pull-Off Behavior of Epoxy Bonded to Silicone Duplex Coatings,” Progress in Organic Coatings, Vol. 36, No. 1-2, 1999, pp. 15-20. doi:10.1016/S0300-9440(98)00074-5
[48] H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi and T. Hamatani, “Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation,” Journal of Sol-Gel Science and Technology, Vol. 26, No. 1, 2003, pp. 681-686. doi:10.1023/A:1020773415962
[49] J. Kim, B. J. Chisholm and J. Bahr, “Adhesion Study of Silicone Coatings: The Interaction of Thickness, Modulus and Shear Rate on Adhesion Force,” Biofouling, Vol. 23, No. 1-2, 2007, pp. 113-120. doi:10.1080/08927010701189708
[50] Q. Chen, J. Tan, S. Shen, Y. Liu, W. Ng and X. Zeng, “Effect of Boehmite Nanorods on the Properties of Glycidoxypropyl-Trimethoxysilane (GPTS) Hybrid Coatings,” Journal of Sol-Gel Science and Technology, Vol. 44, No. 2, 2007, pp. 125-131. doi:10.1007/s10971-007-1621-z
[51] L. Hu, X. Zhang, Y. Sun and R. J. J. Williams, “Hardness and Elastic Modulus Profiles of Hybrid Coatings,” Journal of Sol-Gel Science and Technology, Vol. 34, No. 1, 2005, pp. 41-46. doi:10.1007/s10971-005-1260-1
[52] M. Sakai, M. Sasaki and A. Matsuda, “Indentation Stress Relaxation of Sol-Gel-Derived Organic/Inorganic Hybrid Coating,” Acta Materialia, Vol. 53, No. 16, 2005, pp. 4455-4462. doi:10.1016/j.actamat.2005.06.005
[53] P. Innocenzi, M. Esposto and A. Maddalena, “Mechanical Properties of 3-Glycidoxypropyltrimethoxysilane Based Hybrid Organic-Inorganic Materials,” Journal of Sol-Gel Science and Technology, Vol. 20, No. 3, 2001, pp. 293-301. doi:10.1023/A:1008782203971
[54] E. Amerio, P. Fabbri, G. Malucelli, M. Messori, M. Sangermano and R. Taurino, “Scratch Resistance of Nano-Silica Reinforced Acrylic Coatings,” Progress in Organic Coatings, Vol. 62, No. 2, 2008, pp. 129-133. doi:10.1016/j.porgcoat.2007.10.003
[55] J. Douce, J. P. Boilot, J. Biteau, L. Scodellaro and A. Jimenez, “Effect of Filler Size and Surface Condition of Nano-Sized Silica Particles in Polysiloxane Coatings,” Thin Solid Films, Vol. 466, No. 1-2, 2004, pp. 114-122. doi:10.1016/j.tsf.2004.03.024
[56] Y. Qi, T. Prenzel, T. A. Harriman, Y. Q. Wang, D. A. Lucca, D. Williams, M. Nastasi, J. Dong and A. Mehner, “Investigation of Hydrogen Concentration and Hardness of Ion Irradiated Organically Modified Silicate Thin Films,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 268, No. 11-12, 2010, pp. 1997-2000. doi:10.1016/j.nimb.2010.02.116
[57] M. A. Robertson, R. A. Rudkin, D. Parsonage and A. Atkinson, “Mechanical and Thermal Properties of Or- ganic/Inorganic Hybrid Coatings,” Journal of Sol-Gel Science and Technology, Vol. 26, No. 1, 2003, pp. 291- 295. doi:10.1023/A:1020723821046
[58] J. Ballarre, E. Jimenez-Pique, M. Anglada, S. A. Pellice, and A. L. Cavalieri, “Mechanical Characterization of Nano-Reinforced Silica Based Sol-Gel Hybrid Coatings on AISI 316L Stainless Steel Using Nanoindentation Techniques,” Surface and Coatings Technology, Vol. 203, No. 20-21, 2009, pp. 3325-3331. doi:10.1016/j.surfcoat.2009.04.014
[59] S. Nemeth and Y. C. Liu, “Mechanical Properties of Hybrid Sol-Gel Derived Films as a Function of Composition and Thermal Treatment,” Thin Solid Films, Vol. 517, No. 17, 2009, pp. 4888-4891. doi:10.1016/j.tsf.2009.03.099
[60] L. Hu, D. Wang, Z. Lu, Y. Song and C. Song, “Influence of Titanium Tetrabutoxide on Nanoindentation and Nanoscratch Profiles of Silsesquioxane Films,” Macromolecular Symposia, Vol. 267, No. 1, 2008, pp. 85-89. doi:10.1002/masy.200850715
[61] W. J. Wright and W. D. Nix, “Storage and Loss Stiffnesses and Moduli as Determined by Dynamic Nanoindentation,” Journal of Materials Research, Vol. 24, No. 3, 2009, pp. 863-871. doi:10.1557/jmr.2009.0112
[62] J. G. Kohl, I. L. Singer and D. L. Simonson, “Determining the Viscoelastic Parameters of Thin Elastomer Based Materials Using Continuous Microindentation,” Polymer Testing, Vol. 27, No. 6, 2008, pp. 679-682. doi:10.1016/j.polymertesting.2008.04.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.