Fungal Leaching of Heavy Metals from Sediments Dredged from the Deûle Canal, France
Nada Sabra, Henri-Charles Dubourguier, Tayssir Hamieh
.
DOI: 10.4236/aces.2012.21001   PDF    HTML     5,919 Downloads   11,337 Views   Citations

Abstract

Filamentous fungi were used to leach heavy metals from dredged sediments in semi-pilot scale air-lift bioreactors. Prior to the bioleaching experiments, a physico-chemical characterization of the sediments comprising a sequential extraction study was conducted. The sediments turned out to highly contaminated with heavy metals. Most of the studied metals were found to be strongly linked to the matrix because of their association with the sulphides and with the organic matter. The conditions that favored the solubilization of heavy metals by the filamentous fungi turned out to be favorable for the activity of the sediments organotrophic bacterial microflora as well. The latter played a key role in the biosolubilization process by producing organic acids under temporary anoxic conditions. Better solubilization results (Mn: 77%, Zn: 44%, Cu: 12%, Cd and Pb: <2%) were thus obtained in the uninoculated sugar treatment in comparison to the fungal treatment. In general, organotrophic leaching was found to be limited by the poor nature of the organic acids and by their microbial consumption under sugar limited conditions. It was therefore restrained to the relatively mobile metals, namely those linked to the acid-soluble and reducible fractions of the sediments.

Share and Cite:

N. Sabra, H. Dubourguier and T. Hamieh, "Fungal Leaching of Heavy Metals from Sediments Dredged from the Deûle Canal, France," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 1-8. doi: 10.4236/aces.2012.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Agence de l’Eau Artois-Picardie/BURGEA Région Centre-Est/CEMAGREF, “Utilisation des Oligochètes et Indices Oligochètes pour l'évaluation du Risque écologique lié à la Présence de Micropolluants Minéraux et Or- ganiques dans les Sédiments du Bassin Artois-Picardie. Rapport de Synthèse, RLy 381 a/ A.5484, 1998,” 1998. http://portaildoc.oieau.fr/entrepotsOAI/AEAP/26/132830/132830_doc.pdf.
[2] D. E. Averett, B. D. Perry, E. J. Torrey and J. A. Miller, “Review of Removal, Containment and Treatment Technologies for Remediation of Contaminated Sediment in the Great Lakes,” US EPA, Great Lake National Program Office Assessement and Remediation of Contaminated Sediment Program, Chicago, 1990.
[3] K. C. Yu, L. J. Tsai, S. H. Chen and S. T. Ho, “Chemical Binding of Heavy Metals in Anoxic River Sediments,” Water Research, Vol. 35, No. 17, 2001, pp. 4086-4094. doi:10.1016/S0043-1354(01)00126-9
[4] K. C. Yu, L. J. Tsai, S. H. Chen and S. T. Ho, “Correlation Analyses on Binding Behavior of Heavy Metals with Sediment Matrices,” Water Research, Vol. 35, No. 10, 2001, pp. 2417-2428. doi:10.1016/S0043-1354(00)00518-2
[5] K. Bosecker, “Bioleaching: Metal Solubilization by Microoganisms,” FEMS Microbiology Reviews, Vol. 20, No. 3-4, 1997, pp. 591-604. doi:10.1111/j.1574-6976.1997.tb00340.x
[6] W. Burgstaller and F. Schinner, “Leaching of Metals with Fungi,” Journal of Biotechnology, Vol. 27, 1993, pp. 91-116. doi:10.1016/0168-1656(93)90101-R
[7] W. Burgstaller, A. Zanella and F. Schinner, “Buffer Stimulated Citrate Efflux in Penicilium Simplicissimum: An Alternative Charge Balancing Ion Flow in Case of Reduced Proton Backflow,” Archives of Microbiology, Vol. 161, No. 1, 1994, pp. 75-81. doi:10.1007/BF00248896
[8] I. Bodog, K. Polyak and J. Hlavay, “Determination of Heavy Metals in Lake and River Sediments by Selective Leaching,” International Journal of Environmental and Analytical Chemistry, Vol. 66, No. 2, 1997, pp. 79-94. doi:10.1080/03067319708028353
[9] P. P. Coetzee, K. Gouws, S. Plüddemann, M. Yacoby, S. Howell and L. Drijver, “Evaluation of Sequential Extraction Procedures for Metal Speciation in Model Sediments,” Water SA, Vol. 21, No. 1, 1995, pp. 51-60.
[10] Z. Golab and B. Orlowska, “The Effect of Amino and Organic Acids Produced by the Selected Microorganisms on Metal Leaching,” Acta Microbiologica Polonica, Vol. 37, No. 1, 1988, pp. 83-93.
[11] P. G. Tzeferis, “Fungal Leaching of Nickeliferous Laterites,” Folia Microbiologica, Vol. 39, No. 2, 1994, pp. 137-140. doi:10.1007/BF02906809
[12] F. Schinner and W. Burgstaller, “Extraction of Zinc from Industrial Waste by Penicillium s.p,” Applied and Environmental Microbiology, Vol. 55, No. 5, 1989, pp. 1153- 1156.
[13] B. Müller, W. Burgstaller, H. Strasser, A. Zanella and F. Schinner, “Leaching of Zinc from an Industrial Filter Dust with Penicillium, Pseudomonas and Cornybacterium: Citric Acid is the Leaching Agent Rather Than Amino Acids,” Journal of Indusrial Microbiology, Vol. 14, 1995, pp. 208-212. doi:10.1007/BF01569929
[14] W. Krebs, C. rombacher, P. P. Bosshard, R. Bachofen and H. Brandl, “Microbial Recovery of Metals from Solids,” FEMS Microbiology Reviews, Vol. 20, 1997, pp. 605- 617. doi:10.1111/j.1574-6976.1997.tb00341.x
[15] S.-Y. Chen and J. G. Lin, “Bioleaching of Heay Metals from Sediment: Significance of pH,” Chemosphere, Vol. 44, 2001, pp. 1093-1102. doi:10.1016/S0045-6535(00)00334-9
[16] S.-Y. Chen and J. G. Lin, “Bioleaching of Heay Metals from Contaminated Sediment by Indegenous Sulfur-Oxidizing Bacteria in Air-Lift Bioreactor: Effect of Sulfur Concentration,” Water Research, Vol. 38, 2004, pp. 3205-3214. doi:10.1016/j.watres.2004.04.050
[17] M. Sparrevik, E. Eek and R. S. Grini, “Importance of Sulphide Binding for Leaching of Heavy Metals from Contaminated Norwegian Marine Sediments Treated by Stabilization/Solidification,” Environmental Technology, Vol. 30, No. 8, 2009, pp. 831-840. doi:10.1080/09593330902990121
[18] D. Fang, L. Zhao, Z. Q. Yang, H. X. Shan, Y. Gao and Q. Yang, “Effect of Sulphur Concentration on Bioleaching of Heavy Metals from Contaminated Dredged Sediments,” Environmental Technology, Vol. 30, No. 12, 2009, pp. 1241-1248. doi:10.1080/09593330903045115
[19] V. Cappuyns and R. Swennen, “Sediment Characterization during Oxidation and Ripening and Evaluation of Its Potential Reuse,” Environmental Technology, Vol. 30, No. 8, 2009, pp. 785-797. doi:10.1080/09593330902990071
[20] M. R. Rodriguez-Barroso, Y. Benhamou, D. Coello, B. El Moumni and J. L., Garcia-Morales, “Spatial Distribution of Contaminants in Sediments of Two Rivers Crossing Tangier (northern Morocco),” Environmental Technology, Vol. 31, No. 2, 2010, pp. 155-164. doi:10.1080/09593330903397763
[21] P. Quevauviller, G. Rauret, H. Muntau, A. M. Ure, R. Rubio, J. F. Lopez-Sanchez, H. D. Fiedler and B. Griepink, “Evaluation of Sequential Extraction Procedure for the Determination of Extractable Metal Contents in Sediments, Fresenius,” Journal of Analytical Chemistry, Vol. 349, No. 12, 1994, pp. 808-814.
[22] J. Hlavay and K. Polyak, “Chemical Speciation of Elements in Sediment Samples Collected at Lake Balaton,” Microchemical Journal, Vol. 58, No. 3, 1998, pp. 281- 290. doi:10.1006/mchj.1997.1557
[23] C. P. Kubicek and M. R?hr, “Citric Acid Production,” CRC Critical Reviews in Biotechnology, Vol. 3, No. 4, 1986, pp. 331- 373. doi:10.3109/07388558509150788
[24] S. B. Joye, M. L. Mazotta and J. T. Hollibaugh, “Community Metabolism in Microbial Mats: The Occurence of Biologically-Mediated Iron and Manganese Reduction,” Estuarine, Coastal and Shelf Science, Vol. 43, No. 6, 1996, pp. 747-766. doi:10.1006/ecss.1996.0101
[25] P. Van Cappellen and Y. Wang, “Cycling of Iron and Manganese in Surface Sediments: A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen, Sulfur, Iron, and Manganese,” American Journal of Science, Vol. 296, No. 3, 1996, pp. 197-243. doi:10.2475/ajs.296.3.197
[26] J. E. Kostka and K. H. Nealson, “Dissolution and Reduction of Magnetite by Bacteria,” Environmental Science and Technology, Vol. 29, No. 10, 1995, pp. 2535-2540. doi:10.1021/es00010a012
[27] P. Rusin and H. Ehrlich, “Developments in Microbial Leaching-Mechanisms of Manganese Solubilisation,” Advances in Biochemical Engineering/Biotechnology, Vol. 52, 1995, pp. 1-25. doi:10.1007/BFb0102314
[28] H. Kiel and W. Schwartz, “Leaching of a Silicate and Carbonate Copper with Heterotrophic Fungi and Bacteria, Producing Organic Acids,” Zeitschrift für Allgemeine Mikrobiologie, Vol. 20, No. 10, 1980, pp. 627-636. doi:10.1002/jobm.3630201005
[29] R. Tichy, P. Lens, J. T. C. Grotenhuis and P. Bos, “Solidstate Reduced Sulfur Compounds: Environmental Aspects and Bioremediation,” Critical Reviews in Environmental Science and Technology, Vol. 28, No. 1, 1998, pp. 1-40. doi:10.1080/10643389891254188
[30] W. Rulkens, “Introduction to the Treatment of Polluted Sediments,” Reviews in Environmental Science and Bio/Technology, Vol. 4, No. 3, 2005, pp. 21-221. doi:10.1007/s11157-005-2167-6
[31] R. Sierra-Alavarez, “Fungal Bioleaching of Metals in Preservative-Treated Wood,” Process Biochemistry, Vol. 42, No. 5, 2007, pp. 798-804. doi:10.1016/j.procbio.2007.01.019
[32] A. Gupta and H. L. Ehrlich, “Selective and Non-Selective Bioleaching of Manganese from a Manganese-Containing Silver Ore,” Journal of Biotechnology, Vol. 9, No. 4, 1989, pp. 287-304. doi:10.1016/0168-1656(89)90004-7
[33] S. A. Wasay, S. F. Barrington and S. Tokunaga, “Using Aspergillus Niger to Bioremediate Soils Contaminated by Heavy Metals,” Bioremediation Journal, Vol. 2, No. 3-4, 1998, pp. 183-190. doi:10.1080/10889869809380376

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.