Practical Stabilization of Counterfactual Quantum Cryptography
Musheng Jiang, Shihai Sun, Linmei Liang
.
DOI: 10.4236/jqis.2011.13016   PDF    HTML     3,873 Downloads   7,722 Views   Citations

Abstract

A novel counterfactual quantum key distribution scheme was proposed by T.-G. Noh and a strict security analysis has been given by Z.-Q.Yin, in which two legitimate geographical separated couples may share secret keys even when the key carriers are not traveled in the quantum channel. However, there are still plenty of practical details in this protocol that haven’t been discussed yet, which are of significant importance in physical implementation. In this paper, we will give a practical analysis on such kind of counterfactual quantum cryptography in the aspects of quantum bit error rate (QBER) and stabilization. Furthermore, modified schemes are proposed, which can obtain lower QBER and will be much more robust on stabilization in physical implementation.

Share and Cite:

M. Jiang, S. Sun and L. Liang, "Practical Stabilization of Counterfactual Quantum Cryptography," Journal of Quantum Information Science, Vol. 1 No. 3, 2011, pp. 116-120. doi: 10.4236/jqis.2011.13016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 9-12 December, 1984, pp. 175-179.
[2] A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Physical Review Letters, Vol. 67, No. 6, 1991, pp. 661-663. doi:10.1103/PhysRevLett.67.661
[3] A. Muller, H. Zbinden and N. Gisin, “Quantum Cryptography over 23 km in Installed Under-Lake Telecom Fiber,” Europhysics Letters, Vol. 33, No. 5, 1996, pp. 335- 339. doi:10.1209/epl/i1996-00343-4
[4] C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang and J.-W. Pan, “Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding,” Physical Review Letters, Vol. 98, No. 1, 2007, pp. 010505.1- 010505.4.
[5] C. H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Physical Review Letters, Vol. 68, No. 21, 1992, pp. 3121-3124. doi:10.1103/PhysRevLett.68.3121
[6] X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui and G.-C. Guo, “Faraday-Michelson System for Quantum Cryptography,” Optics Letters, Vol. 30, No. 19, 2005, pp. 2632- 2634. doi:10.1364/OL.30.002632
[7] H.-Q. Ma, J.-L. Zhao and L.-A. Wu, “Quantum Key Distribution Based on Phase Encoding and Polarization Measurement,” Optics Letters, Vol. 32, No. 6, 2007, pp. 698-700. doi:10.1364/OL.32.000698
[8] A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden and N. Gisin, “‘Plug and Play’ Systems for Quantum Cryptography,” Applied Physics Letters, Vol. 70, No. 7, 1997, pp. 793-795. doi:10.1063/1.118224
[9] S.-H. Sun, H.-Q. Ma, J.-J. Han, L.-M. Liang and C.-Z. Li, “Quantum Key Distribution Based on Phase Encoding in Long-Distance Communication Fiber,” Optics Letters, Vol. 35, No. 8, 2010, pp. 1203-1205. doi:10.1364/OL.35.001203
[10] T.-G. Noh, “Counterfactual Quantum Cryptography,” Phy- sical Review Letters, Vol. 103, No. 23, 2009, pp. 230501.1- 230501.4.
[11] G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phy- sical Review Letters, Vol. 85, No. 6, 2000, pp. 1330- 1333. doi:10.1103/PhysRevLett.85.1330
[12] Z.-Q. Yin, H.-W. Li, W. Chen, Z.-Fu Han and G.-C. Guo, “Security of Counterfactual Quantum Cryptography,” Physical Review A, Vol. 82, No. 4, 2010, pp. 042335.1- 042335.6.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.