Role of Tat-Mediated PDZ Peptide Delivery in Pain Therapy
Haiying Wu, Feng Tao
.
DOI: 10.4236/jbnb.2011.225071   PDF    HTML     4,168 Downloads   6,901 Views  

Abstract

Delivery of therapeutic peptides or proteins into tissues is severely limited by the size and biochemical properties of the molecules. Protein transduction domain (PTD)-mediated cargo transduction represents a novel and promising strategy to deliver biologically active peptides in vivo. The first PTD was identified from the HIV-1 transactivating transcriptional activator protein Tat in 1988. Since then, other PTDs have also been identified, including the third α-helix of the antennapedia homeotic transcription factor and synthetic peptide carriers. However, Tat PTD (amino acids 47 - 57) has shown markedly better ability for intracellular delivery than other PTDs. It has been demonstrated that fusion peptides containing the Tat PTD enter the central nervous system after systemic administration. Our previous study has shown that i.p. injected Tat-PSD-95 PDZ2 expresses in the central nervous system and significantly disrupts PDZ domain-mediated protein interactions between PSD-95 and N-methyl-D-aspartate receptor subunit NR2A/2B, thereby alleviating chronic pain. Therefore, Tat-mediated intracellular delivery can be used for systemic administration of analgesics in pain management.

Share and Cite:

Wu, H. and Tao, F. (2011) Role of Tat-Mediated PDZ Peptide Delivery in Pain Therapy. Journal of Biomaterials and Nanobiotechnology, 2, 596-600. doi: 10.4236/jbnb.2011.225071.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Joliot and A. Prochiantz, “Transduction Peptides: From Technology to Physiology,” Nature Cell Biology, Vol. 6, No. 3, 2004, pp. 189-196. doi:10.1038/ncb0304-189
[2] R. Trehin and H. P. Merkle, “Chances and Pitfalls of Cell Penetrating Peptides for Cellular Drug Delivery,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 58, No. 2, 2004, pp. 209-223. doi:10.1016/j.ejpb.2004.02.018
[3] A. D. Frankel and C. O. Pabo, “Cellular Uptake of the Tat Protein from Human Immunodeficiency Virus,” Cell, Vol. 55, No. 6, 1988, pp. 1189-1193. doi:10.1016/0092-8674(88)90263-2
[4] M. Green and P. M. Loewenstein, “Autonomous Functional Domains of Chemically Synthesized Human Immunodeficiency Virus Tat Trans-Activator Protein,” Cell, Vol. 55, No. 6, 1988, pp. 1179-1188. doi:10.1016/0092-8674(88)90262-0
[5] F. Perez, A. Joliot, E. Bloch-Gallego, A. Zahraoui, A. Triller and A. Prochiantz, “Antennapedia Homeobox as a Signal for the Cellular Internalization and Nuclear Addressing of a Small Exogenous Peptide,” Journal of Cell Science, Vol. 102, Part 4, 1992, pp. 717-722.
[6] P. E. Thoren, D. Persson, M. Karlsson and B. Norden, “The Antennapedia Peptide Penetratin Translocates across Lipid Bilayers—The First Direct Observation,” FEBS Letters, Vol. 482, No. 3, 2000, pp. 265-268. doi:10.1016/S0014-5793(00)02072-X
[7] K. Fujimoto, R. Hosotani, Y. Miyamoto, R. Doi, T. Koshiba, A. Otaka, N. Fujii, R. D. Beauchamp and M. Imamura, “Inhibition of pRb Phosphorylation and Cell Cycle Progression by an Antennapedia-p16(INK4A) Fusion Peptide in Pancreatic Cancer Cells,” Cancer Letters, Vol. 159, No. 2, 2000, pp. 151-158. doi:10.1016/S0304-3835(00)00536-X
[8] P. A. Wender, J. B. Rothbard, T. C. Jessop, E. L. Kreider and B. L. Wylie, “Oligocarbamate Molecular Transporters: Design, Synthesis, and Biological Evaluation of a New Class of Transporters for Drug Delivery,” Journal of the American Chemical Society, Vol. 124, No. 45, 2002, pp. 13382-13383. doi:10.1021/ja0275109
[9] S. Uemura, J. B. Rothbard, H. Matsushita, P. S. Tsao, C. G. Fathman and J. P. Cooke, “Short Polymers of Arginine Rapidly Translocate into Vascular Cells: Effects on Nitric Oxide Synthesis,” Circulation Journal, Vol. 66, 2002, pp. 1155-1160. doi:10.1253/circj.66.1155
[10] J. B. Rothbard, E. Kreider, C. L. Van Deusen, L. Wright, B. L. Wylie and P. A. Wender, “Arginine-Rich Molecular Transporters for Drug Delivery: Role of Backbone Spacing in Cellular Uptake,” Journal of Medicinal Chemistry, Vol. 45, No. 17, 2002, pp. 3612-3618. doi:10.1021/jm0105676
[11] M. G. Garry, S. Malik, J. Yu, M. A. Davis and J. Yang, “Knock down of Spinal NMDA Receptors Reduces NMDA and Formalin Evoked Behaviors in Rat,” Neuroreport, Vol. 11, 2000, pp. 49-55. doi:10.1097/00001756-200001170-00010
[12] J. Mao, D. D. Price, R. L. Hayes, J. Lu and D. J. Mayer, “Differential Roles of NMDA and Non-NMDA Receptor Activation in Induction and Maintenance of Thermal Hyperalgesia in Rats with Painful Peripheral Mononeuropathy,” Brain Research, Vol. 598, No. 1-2, 1992, pp. 271- 278. doi:10.1016/0006-8993(92)90193-D
[13] K. Ren, J. L. Hylden, G. M. Williams, M. A. Ruda and R. Dubner, “The Effects of a Non-Competitive NMDA Receptor Antagonist, MK-801, on Behavioral Hyperalgesia and Dorsal Horn Neuronal Activity in Rats with Unilateral Inflammation,” Pain, Vol. 50, No. 3, 1992, pp. 331- 344. doi:10.1016/0304-3959(92)90039-E
[14] F. Wei, G. D. Wang, G. A. Kerchner, S. J. Kim, H. M. Xu, Z. F. Chen and M. Zhuo, “Genetic Enhancement of Inflammatory Pain by Forebrain NR2B Overexpression,” Nature Neuroscience, Vol. 4, 2001, pp. 164-169. doi:10.1038/83993
[15] H. C. Kornau, L. T. Schenker, M. B. Kennedy and P. H. Seeburg, “Domain Interaction between NMDA Receptor Subunits and the Postsynaptic Density Protein PSD-95,” Science, Vol. 269, No. 5231, 1995, pp. 1737-1740. doi:10.1126/science.7569905
[16] K. S. Christopherson, B. J. Hillier, W. A. Lim and D. S. Bredt, “PSD-95 Assembles a Ternary Complex with the N-methyl-D-aspartic Acid Receptor and a Bivalent Neuronal NO Synthase PDZ Domain,” Journal of Biological Chemistry, Vol. 274, No. 39, 1999, pp. 27467-27473. doi:10.1074/jbc.274.39.27467
[17] Z. Songyang, A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia, A. H. Chishti, A. Crompton, A. C. Chan, J. M. Anderson and L. C. Cantley, “Recognition of Unique Carboxyl- Terminal Motifs by Distinct PDZ Domains,” Science, Vol. 275, No. 5296, 1997, pp. 73-77. doi:10.1126/science.275.5296.73
[18] N. L. Stricker, K. S. Christopherson, B. A. Yi, P. J. Schatz, R. W. Raab, G. Dawes, D. E. Bassett Jr., D. S. Bredt and M. Li, “PDZ Domain of Neuronal Nitric Oxide Synthase Recognizes Novel C-Terminal Peptide Sequences,” Nature Biotechnology, Vol. 15, 1997, pp. 336- 342. doi:10.1038/nbt0497-336
[19] A. Ziegler and J. Seelig, “Interaction of the Protein Transduction Domain of HIV-1 TAT with Heparan Sulfate: Binding Mechanism and Thermodynamic Parameters,” Biophysical Journal, Vol. 86, No. 1, 2004, pp. 254-263. doi:10.1016/S0006-3495(04)74101-6
[20] M. Tyagi, M. Rusnati, M. Presta and M. Giacca, “Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans,” Journal of Biological Chemistry, Vol. 276, No. 5, 2001, pp. 3254-3261. doi:10.1074/jbc.M006701200
[21] A. Ziegler, P. Nervi, M. Durrenberger and J. Seelig, “The Cationic Cell-Penetrating Peptide CPP(TAT) Derived from the HIV-1 Protein TAT Is Rapidly Transported into living Fibroblasts: Optical, Biophysical, and Metabolic Evidence,” Biochemistry, Vol. 44, No. 1, 2005, pp. 138- 148. doi:10.1021/bi0491604
[22] S. Console, C. Marty, C. Garcia-Echeverria, R. Schwendener and K. Ballmer-Hofer, “Antennapedia and HIV Transactivator of Transcription (TAT) ‘Protein Transduction Domains’ Promote Endocytosis of High Molecular Weight Cargo upon Binding to Cell Surface Glycosaminoglycans,” Journal of Biological Chemistry, Vol. 278, No. 37, 2003, pp. 35109-35114. doi:10.1074/jbc.M301726200
[23] S. M. Fuchs and R. T. Raines, “Pathway for Polyarginine Entry into Mammalian Cells,” Biochemistry, Vol. 43, No. 9, 2004, pp. 2438-2444. doi:10.1021/bi035933x
[24] S. Futaki, “Oligoarginine Vectors for Intracellular Delivery: Design and Cellular-Uptake Mechanisms,” Biopolymers, Vol. 84, No. 3, 2006, pp. 241-249. doi:10.1002/bip.20421
[25] M. Lundberg, S. Wikstrom and M. Johansson, “Cell Surface Adherence and Endocytosis of Protein Transduction Domains,” Molecular Therapy, Vol. 8, 2003, pp. 143-150. doi:10.1016/S1525-0016(03)00135-7
[26] G. Drin, S. Cottin, E. Blanc, A. R. Rees and J. Temsamani, “Studies on the Internalization Mechanism of Cationic Cell-Penetrating Peptides,” Journal of Biological Chemistry, Vol. 278, No. 33, 2003, pp. 31192-31201. doi:10.1074/jbc.M303938200
[27] I. M. Kaplan, J. S. Wadia and S. F. Dowdy, “Cationic TAT Peptide Transduction Domain Enters Cells by Macropinocytosis,” Journal of Controlled Release, Vol. 102, No. 1, 2005, pp. 247-253. doi:10.1016/j.jconrel.2004.10.018
[28] J. S. Wadia, R. V. Stan and S. F. Dowdy, “Transducible TAT-HA Fusogenic Peptide Enhances Escape of TAT- Fusion Proteins after Lipid Raft Macropinocytosis,” Nature Medicine, Vol. 10, No. 3, 2004, pp. 310-315. doi:10.1038/nm996
[29] B. Albarran, R. To and P. S. Stayton, “A TAT-Streptavidin Fusion Protein Directs Uptake of Biotinylated Cargo into Mammalian Cells,” Protein Engineering Design & Selection, Vol. 18, No. 3, 2005, pp. 147-152. doi:10.1093/protein/gzi014
[30] F. Tao, Y. X. Tao, J. A. Gonzalez, M. Fang, P. Mao and R. A. Johns, “Knockdown of PSD-95/SAP90 Delays the Development of Neuropathic Pain in Rats,” Neuroreport, Vol. 12, 2001, pp. 3251-3255. doi:10.1097/00001756-200110290-00022
[31] F. Tao, Y. X. Tao, P. Mao and R. A. Johns, “Role of Postsynaptic Density Protein-95 in the Maintenance of Peripheral Nerve Injury-Induced Neuropathic Pain in Rats,” Neuroscience, Vol. 117, No. 3, 2003, pp. 731-739. doi:10.1016/S0306-4522(02)00801-1
[32] F. Tao, Q. Su and R. A. Johns, “Cell-Permeable Peptide Tat-PSD-95 PDZ2 Inhibits Chronic Inflammatory Pain Behaviors in Mice,” Molecular Therapy, Vol. 16, No. 11, 2008, pp. 1776-1782. doi:10.1038/mt.2008.192

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.