Poly Ethylene Glycols (PEG) and Micelles as Efficient Catalysts for the Oxidation of Xanthine Derivatives under Conventional and Non-Conventional Conditions


Oxidation of Xanthine alkaloid have been studied with various one and two electron oxidizing agents using PEGs and micelle forming surfactants. The reaction is too sluggish in solution phase, but moderately fast in presence of PEGs and micelles. However, the reactions are dramatically enhanced under microwave irradiations. Present protocol has several advantages, such as solvent-free conditions, during work-up, fast reaction times, high yields, eco-friendly operational and experimental simplicity, readily available additives as catalysts.

Share and Cite:

S. Shylaja, K. Ramesh, P. Reddy, K. Rajanna and P. Saiprakash, "Poly Ethylene Glycols (PEG) and Micelles as Efficient Catalysts for the Oxidation of Xanthine Derivatives under Conventional and Non-Conventional Conditions," International Journal of Organic Chemistry, Vol. 1 No. 4, 2011, pp. 148-157. doi: 10.4236/ijoc.2011.14022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. E. Metzler, “Biochemistry: The Chemical Reactions of Living Cells,” Academic Press, New York, 1977, p. 882.
[2] A. White, P. Handler and E. L. Smith, “Principles of Bio- chemi-stry,” McGraw-Hill, New York, 1973, p. 947.
[3] D. M. Graham, “Caffeine—Its Identity, Dietary Sources, Intake and Biological Effects,” Nutrition Reviews, Vol. 36, No. 4, 1978, pp. 97-102. doi:10.1111/j.1753-4887.1978.tb03717.x
[4] A. Turnball, “Coffee,” Nutrition Bulletin, Vol. 6, No. 3, 1981, pp. 153-165.
[5] P. Anastas and J. Warner, “Green Chemistry: Theory and Practice,” Oxford University Press, New York, 1998.
[6] C. K. Z. Andrade and L. M. Alves, “Environmen-tally Benign Solvents in Organic Synthesis: Current Topics,” Current Organic Chemistry, Vol. 9, No. 2, 2005, p. 195.
[7] J. M. Harris and S. Zalipsky, “Poly(Ethylene Glycol): Che- mistry and Biological Applications,” ACS Books, Wash- ington DC, 1997. doi:10.1021/bk-1997-0680
[8] T. J. Dickerson, N. N. Reed and K. D. Janda, “Soluble Polymers as Scaffolds for Re-coverable Catalysts and Reagents,” Chemical Reviews, Vol. 102, No. 10, 2002, pp. 3325-3344. doi:10.1021/cr010335e
[9] J. M. Ahn, P. Wentworth Jr. and K. D. Janda, “Soluble Po- ly-mer-Supported Convergentparallel Library Synthesis,” Chemical Communications, No. 4, 2003, pp. 480-481. doi:10.1039/b210696e
[10] T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews, Vol. 99, No. 8, 1999, pp. 2071-2084. doi:10.1021/cr980032t
[11] M. Freemoutle, “NATO Workshop Examines the Indus- trial Potential of Green Chemistry Using Room-Tempe- rature ‘Designer Solvents’,” Chemical & Engineering News, 2000, Vol. 78, No. 20, pp. 37-50. doi:10.1021/cen-v078n020.p037
[12] P. Wassercheid and W. K. Angew, “Ionic Liquids—New “Solutions” for Transition Metal Catalysis,” Angewandte Chemie International Edition, Vol. 39, No. 21, 2000, pp. 3772-3789. doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
[13] M. Freemoulte, “Green ‘Designer Solvents’ Find Addi- tional Effective Uses, Now for Enzyme Catalysis and in Classic Organic Syntheses,” Chemical & Engineering News, Vol. 79, No. 1, 2001, pp. 21-25. doi:10.1021/cen-v079n001.p021
[14] C. Ji, K. S. Scott, G. H. Jonathan and D. R. Robin, “Poly- ethylene Glycol and Solutions of Polyethylene Glycol as Green Reaction Media” Green Chemistry, Vol. 7, No. 2, 2005, pp. 64-82. doi:10.1039/b413546f
[15] S. Chandrasekhar, Ch. Narsihmulu, S. S. Sultana and N. R. K. Reddy, “Poly(Ethylene Glycol) (PEG) as a Reusable Solvent Medium for Organic Synthesis. Applica-tion in the Heck Reaction,” Tetrahedron Letters, Vol. 4, No. 25, 2002, pp. 4399-4401. doi:10.1021/ol0266976
[16] S. Chan-drasekhar, Ch. Narsihmulu, G. Chandrasekhar, T. Shyamsunder, “Pd/CaCO3 in Liquid Poly(Ethylene Gly- col) (PEG): An Easy and Efficient Recycle System for Partial Reduction of Alkynes to Cis-Olefins under a Hy- drogen Atmosphere,” Tetrahedron Letters, Vol. 45, No. 11, 2004, pp. 2421-2423. doi:10.1016/j.tetlet.2004.01.097
[17] S. Chandrasekhar, Ch. Narsihmulu, S. S. Sultana and N. R. K. Reddy, “Osmium Tetroxide in Poly(Ethylene Glycol) (PEG): A Recyclable Reaction Medium for Rapid Asy- mmetric Dihydroxylation under Sharpless Conditions,” Che- mical Communications, No. 14, 2003, pp. 1716-1717. doi:10.1039/b305154b
[18] S. Chandrasekhar, Ch. Narsihmulu, B. Saritha and S. S. Sul- tana, “Poly(Ethyleneglycol) (PEG): A Rapid and Recycla- ble Reaction Medium for the DAB-CO-Catalyzed Baylis- Hillman Reaction,” Tetrahedron Letters, Vol. 45, No. 30, 2004, pp. 5865-5867. doi:10.1016/j.tetlet.2004.05.153
[19] M. Xia and Y. G. Wang, “Soluble Polymer-Supported Syn- thesis of Biginelli Com-pounds,” Tetrahedron Letters, Vol. 43, No. 43, 2002, pp. 7703-7705. doi:10.1016/S0040-4039(02)01850-6
[20] J. H. Li, X.-C. Hu, Y. Liang and Y.-X. Xie, “PEG-400 Promoted Pd(OAc)2/DABCO-Catalyzed Cross-Coupling Reactions in Aqueous Media,” Tetrahedron Letters, Vol. 62, 2006, p. 31.
[21] A. Haimov and R. Neumann, “Polyethylene Glycol as a Non-Ionic Liquid Solvent for Polyoxometalate Catalyzed Aerobic Oxidation,” Chemical Communications, No. 8, 2002, pp. 876-977. doi:10.1039/b200559j
[22] S. Chandrasekhar, Ch. Narsihmulu, N. R. K. Reddy and S. S. Sultana, “Asymmetric Aldol Reactions in Poly(Ethylene Glycol) Catalyzed By L-Proline,” Tetrahedron Letters, Vol. 45, No. 23, 2004, pp. 4581-4582. doi:10.1016/j.tetlet.2004.03.116
[23] P.-Y. Lin, R.-S. Hou, H.-M. Wang, I.-J. Kang and L.-C. Chen, “Hypervalent Iodine(III) Sulfonate Mediated Synthesis of Quinoxalines in Liquid PEG-400,” Journal of the Chinese Chemical Society, Vol. 56, 2009, p. 683.
[24] G. R. Desiraju and B. S. Goud, “Reactivity of Solids: Pre- sent, Past and Future,” Blackwell Sciences, London, 1995, p. 223.
[25] V. Ramamurthy and K. Venkatesan, “Photochemical Reac- tions of Organic Crystals,” Chemical Reviews, Vol. 87, No. 2, 1987, pp. 433-481. doi:10.1021/cr00078a009
[26] F. Toda, “Solid State Organic Chemistry: Efficient Reac- tions, Remarkable Yields, and Ste-reoselectivity,” Accounts of Chemical Research, Vol. 28, No. 12, 1995, pp. 480- 486. doi:10.1021/ar00060a003
[27] K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Re-views, Vol. 100, No. 3, 2000, pp. 1025-1074. doi:10.1021/cr940089p
[28] T. J. Mason, “Chemistry with Ultrasound,” Elsevier Applied Science, New York, 1990.
[29] T. J. Mason and J. Lindley, “Sonochemistry. Part 1—The Physical Aspects,” Chemical Society Reviews, Vol. 16, 1987, pp. 239-274. doi:10.1039/cs9871600239
[30] M. J. Blandamer, “Introduction to Chemical Ultrasonics,” Academic Press, New York, 1973.
[31] K. S. Suslick, Ed., “Ultrasound, Chemical, Physical and Biological Effects,” VCH Publishers, New York, 1986.
[32] M. A. P. Martings, C. M. P. Pereira and W. Cunico, “Ultrasound Promoted Synthesis of 5-Hydroxy-5-trihalome- thyl-4,5-dihydroisoxazoles and β-Enamino Trihalomethyl Ketones in Water,” Ultrasonics So-nochemistry, Vol. 13, No. 4, 2006, pp. 364-370. doi:10.1016/j.ultsonch.2005.04.009
[33] G. H. Mahdavinia, S. Rostamizadeh, A. M. Amani and Z. Emdadi, “Ultra-sound-Promoted Greener Synthesis of Aryl- 14-H-dibenzo[a,j] Xanthenes Catalyzed by NH4H2PO4/SiO2 in Water,” Ultrasonics Sonochemistry, Vol. 16, No. 1, 2009, pp. 7-10. doi:10.1016/j.ultsonch.2008.05.010
[34] R. S. Varma, “Mi-crowaves: Theory and Application in Material Processing IV,” D. E. Clark, W. H. Sutton and D. A. Lewis, Eds., American Ceramic Society, Westerville, 1997, p. 357.
[35] R. S. Varma, “Solvent-Free Accelerated Organic Synthe- ses Using Microwaves,” Pure and Applied Chemistry, Vol. 73, No. 1, 2001, pp. 193-198. doi:10.1351/pac200173010193
[36] J. Hamelin, J. P. Bazureau, F. Texier-Boullet and A. Lou- by, Eds., “Microwave in Organic Synthesis,” Wiley-VCH, Weinheim, 2002, p. 253.
[37] J. H. Fendler and R. J. Fendler, “Catalysis in Micellar and Mi-cro-Molecular Systems,” Academic Press, New York, 1975.
[38] S. D. Christian and J. F Scamehorn, “Solubilization in Surfactant Aggrergates,” Marcell Dekkar Inc., New York, 1995.
[39] K. L. Mittal, Ed., “Micellization, Solubilization and Micro Emulsions,” Plenum Press, New York, 1997.
[40] K. L. Mittal and B. Lindman, Ed., “Surfactants in Solution,” Plenum Press, New York, 1984.
[41] K. C. Rajanna, M. M. Ali, S. Sana, Tasneem and P. K. Sai- prakash, “Ultrasonically Accelerated Vilsmeier Haack Cyc- lisation and Formylation Reactions,” Synthetic Commu- nications, Vol. 32, No. 9, 2002, pp. 1351-1356.
[42] S. Ramgopal, K. Ramesh, N. Maasi Reddy, A. Chakrad- har and K. C. Rajanna, “Metal nitrate driven nitro Hunsdiecker reaction with α,β-unsaturated carboxylic acids under solvent-free conditions,” Tetrahedron Letters, Vol. 48, No. 23, 2007, p .4043.
[43] K. C. Rajanna, N. Maasi Reddy, M. Rajender Reddy and P. K. Saiprakash, “Micellar Mediated Halodecarboxyla- tion of α,β-Unsaturated Aliphatic and Aromatic Carboxy- lic Acids—A Novel Green Hunsdiecker-Borodin Reac- tion,” Journal of Dispersion Science and Technology,Vol. 28, No. 4, 2007, pp. 613-616. doi:10.1080/01932690701282690
[44] E. J. Corey and W. Suggs, “Pyridinium Chlorochromate an Efficient Reagent for Oxidation of Primary and Sec- ondary Alcohols to Carbonyl Compounds,” Tetrahedron Letters, Vol. 16, No. 31, 1975, pp. 2647-2650. doi:10.1016/S0040-4039(00)75204-X
[45] C. Oliver Kappe, “Controlled Microwave Heating in Mo- dern Organic Synthe-sis,” Angewandte Chemie Internatio- nal Edition, Vol. 43, No. 46, 2004, pp. 6250-6284. doi:10.1002/anie.200400655
[46] D. R. Baghurst and D. M. P. Mingos, “Tilden Lecture. Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry,” Chemical Society Re- views, Vol. 20, No. 1, 1991, pp. 1-47.
[47] M. Hajek, “Microwaves in Organic Synthesis,” A. Loupy, Ed., Wiley-VCH, Weinheim, 2002, p. 345. doi:10.1002/3527601775.ch10

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.