Share This Article:

Polymorphism in cardiovascular diseases (CVD) susceptibility loci in the azores islands (Portugal)

Full-Text HTML Download Download as PDF (Size:406KB) PP. 48-53
DOI: 10.4236/ojgen.2011.13009    3,762 Downloads   7,404 Views   Citations


Background: Atherosclerosis and thrombosis are the major manifestations underlying cardiovascular diseases (CVD), which are the leading cause of mortality and morbidity worldwide. Both result from an interaction between genetic and environmental risk factors. The goal of our study was to evaluate several polymorphisms identified as predisposing factors to atherosclerosis and thrombosis. Material and Methods: A series of 155 healthy unrelated individuals of Azorean origin were analyzed using the CVD StripAssay (ViennaLab Diagnostics, Austria) for the most established polymorphisms involved in blood coagulation (F2, F5, F13A1, FGB), fibrinolitic system (SERPINE1), platelet adhesion (ITGB3), homocysteine metabolism (MTHFR), reninangio-tensin system (ACE) and lipid metabolism (APOE). Results: No significant differences were observed in allelic frequencies when comparing our data to mainland Portugal. Group stratification according to the number of “increased” risk alleles, demonstrated that 116/155 (75%) individuals belong to the moderate risk group (5 - 10 risk alleles). Conclusions: Although acknowledging the fact that the allelic states at the analysed loci lack predictive value, the fact that a high frequency of individuals presents at least 5 risk alleles (124/155; 80%) is important for the establishment of the appropriate preventive measures in the Azorean population.

Cite this paper

Raposo, M. , Sousa, P. , Nemeth, S. , Couto, A. , Santos, M. , Pinheiro, J. , Peixoto, M. , Oberkanins, C. , Kazachkova, N. , Cymbron, T. , Lima, M. and Bruges-Armas, J. (2011) Polymorphism in cardiovascular diseases (CVD) susceptibility loci in the azores islands (Portugal). Open Journal of Genetics, 1, 48-53. doi: 10.4236/ojgen.2011.13009.


[1] Viles-Gonzalez, J.F., Fuster, V. and Badimon, J.J. (2004) Atherothrombosis: A widespread disease with unpredictable and life-threatening consequences. European Heart Journal, 25, 1197-1207. doi:10.1016/j.ehj.2004.03.011
[2] Roy, H., Bhardwaj, S. and Yla-Herttuala, S. (2009) Molecular genetics of atherosclerosis. Human Genetics, 125, 467-491. doi:10.1007/s00439-009-0654-5
[3] Voetsch, B. and Loscalzo, J. (2004) Genetic determinants of arterial thrombosis. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 216-229. doi:10.1161/01.ATV.0000107402.79771.fc
[4] Elementos Estatísticos, Informacao Geral Saúde (2006) “Direccao Geral de Saúde,” Risco de morrer em Portugal, 1, 85-98.
[5] Bersano, A., Ballabio, E., Bresolin, N. and Candelise, L. (2008) Genetic polymorphisms for the study of multifactorial stroke. Human Mutation, 29, 776-795. doi:10.1002/humu.20666
[6] Kottke-Marchant, K. (2002) Genetic polymorphisms associated with venous and arterial thrombosis: an overview. Archives of Pathology and Laboratory Medicine, 126, 295-304.
[7] Castoldi, E., Rosing, J., Girelli, D., Hoekema, L., et al. (2000) Mutations in the R2 FV gene affect the ratio between the two FV isoforms in plasma. Thrombosis and Haemostasis, 83, 362-365.
[8] Lane, D.A. and Grant, P.J. (2000) Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood, 95, 1517-1532.
[9] Eichner, J.E., Dunn, S.T., Perveen, G., Thompson, D.M., et al. (2002) Apolipoprotein E polymorphism and cardiovascular disease: A HuGE review. American Journal of Epidemiology, 155, 487. doi:10.1093/aje/155.6.487
[10] Attié-Castro, F.A., Zago, M.A., Lavinha, J., Elion, J., et al. (2000) Ethnic heterogeneity of the factor XIII Val34- Leu polymorphism. Thrombosis and Haemostasis, 84, 601-603.
[11] Castro, R. (2003) 5,10-Methylenetetrahydrofolate reducetase 677C- > T and 1298A->C mutations are genetic determinants of elevated homocysteine. Quarterly Journal of Medicine, 96, 297-303. doi:10.1093/qjmed/hcg039
[12] Costa, A.M., Silva, A.J., Garrido, N.D., Louro, H., et al. (2009) Association between ACE D allele and elite short distance swimming. European Journal of Applied Physiology, 106, 785-790. doi:10.1007/s00421-009-1080-z
[13] Marinho, C., Alho, I., Arduíno, D., Falcao, Luiz M., et al. (2007) GST M1/T1 and MTHFR polymorphisms as risk factors for hypertension. Biochemical and Biophysical Research Communications, 353, 344-350. doi:10.1016/j.bbrc.2006.12.019
[14] Rodrigues, M.O., Fonseca, A., Matias Dias, C., Albergaria, I., et al. (2005) APOE genotypes and dyslipidemias in a sample of the Portuguese population. Clinical Chemistry and Laboratory Medicine, 43, 907-912. doi:10.1515/CCLM.2005.155
[15] Seixas, S., Trovoada, M.J. and Rocha, J. (1999) Haplo-type analysis of the apolipoprotein E and apolipoprotein C1 loci in Portugal and Sao Tomé e Príncipe (Gulf of Guinea): linkage disequilibrium evidence that APOE*4 is the ancestral APOE allele. Human Biology, 71, 1001- 1008.
[16] Araújo, F., Santos, A., Araújo, V., Henriques, I., et al. (1999) Genetic risk factors in acute coronary disease. Haemostasis, 29, 212-218.
[17] Gialeraki, A., Politou, M., Rallidis, L., Merkouri, E., et al. (2008) Prevalence of prothrombotic polymorphisms in Greece. Genetic Testing, 12, 541-547. doi:10.1089/gte.2008.0060
[18] Hancer, V.S. and Diz-Kucukkaya, R.M. (2005) Turkish population data on the factor XIII Val34Leu, glycoprotein (GP) Ibα Kozak and P-selectin glycoprotein ligand 1 (PSGL-1) loci. Cell Biochemistry and Function, 23, 55- 58. doi:10.1002/cbf.1150
[19] Wells, P.S., Anderson, J.L., Scarvelis, D.K., Doucette, S.P. and Gagnon, F. (2006) Factor XIII Val34Leu variant is protective against venous thromboembolism: A HuGE review and meta-analysis. American Journal of Epidemiology, 164, 101-109. doi:10.1093/aje/kwj179
[20] Qi, X., Ma, X., Yang, X., Fan, L., et al. (2010) Methy-lenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Research and Treatment, 123, 499-506. doi:10.1007/s10549-010-0773-7
[21] Dong, X., Wu, J., Liang, P., Li, J., et al. (2010) Methyle- netetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer: A meta-analysis. Archives of Medical Research, 41, 125-133. doi:10.1016/j.arcmed.2010.01.001
[22] Khandanpour, N., Willis, G., Meyer, F.J., Armon, M.P., et al. (2009) Peripheral arterial disease and methylenetet- rahydrofolate reductase (MTHFR) C677T mutations: A case-control study and meta-analysis. Journal of Vascular Surgery, 49, 711-718. doi:10.1016/j.jvs.2008.10.004
[23] Salem, A.H., Han, K. and Batzer, M.A. (2009) Allele frequencies of the human platelet antigen-1 in the Egyptian population. BMC Research Notes, 2, 90. doi:10.1186/1756-0500-2-90
[24] Castaman, G., Faioni, E.M., Tosetto, A. and Bernardi, F. (2003) The factor V HR2 haplotype and the risk of venous thrombosis: A meta-analysis. Haematologica, 88, 1182-1189.
[25] Bouaziz-Borgi, L., Nguyen, P., Hezard, N., Musharrafieh, U., et al. (2007) A case control study of deep venous thrombosis in relation to factor V G1691A (Leiden) and A4070G (HR2 Haplotype) polymorphisms. Experimental and Molecular Pathology, 83, 480-483. doi:10.1016/j.yexmp.2007.04.006
[26] Lucotte, G. and Mercier, G. (2001) Population genetics of factor V Leiden in Europe. Blood Cells, Molecules, and Diseases, 27, 362-367. doi:10.1006/bcmd.2001.0388
[27] Burzotta, F., Paciaroni, K., De Stefano, V., Crea, F., et al. (2004) G20210A prothrombin gene polymorphism and coronary ischaemic syndromes: A phenotype-specific meta-analysis of 12,034 subjects. Heart, 90, 82-86. doi:10.1136/heart.90.1.82
[28] Hessner, M.J., Dinauer, D.M., Luhm, R.A., Endres, J.L., et al. (1999) Contribution of the glycoprotein Ia 807TT, methylene tetrahydrofolate reductase 677TT and prothrombin 20210GA genotypes to prothrombotic risk among factor V 1691GA (Leiden) carriers. British Journal of Haematology, 106, 237-239. doi:10.1046/j.1365-2141.1999.01514.x
[29] Szolnoki, Z., Somogyvári, F., Kondacs, A., Szabó, M. and Fodor, L. (2002) Evaluation of the interactions of common genetic mutations in stroke subtypes. Journal of Neurology, 249, 1391-1397. doi:10.1007/s00415-002-0848-4
[30] Weiss, K.M. and Clark, A.G. (2002) Linkage disequilibrium and the mapping of complex human traits. Trends in Genetics, 18, 19-24. doi:10.1016/S0168-9525(01)02550-1
[31] Shi, M., Caprau, D., Romitti, P., Christensen, K. and Murray, J.C. (2003) Genotype frequencies and linkage disequilibrium in the CEPH human diversity panel for variants in folate pathway genes MTHFR, MTHFD, MTRR, RFC1, and GCP2. Birth Defects Research Part A, Clinical and Molecular Teratology, 67, 545-549. doi:10.1002/bdra.10076
[32] Excoffier, L., Laval, G. and Schneider, S. (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
[33] Raymont M. and Rousset F. (1995) GENEPOP (V.1.2) A population genetics software for exact tests and ecumenicism. Journal of Heredity, 95, 248-249.
[34] Inc., S. (2006) SPSS for windows: Release 15.0.0. SPSS Inc., Chicago.
[35] Almawi, W.Y., Tamim, H., Kreidy, R. and Timson, G.E. (2005) Case-control study on the contribution of factor V-Leiden, prothrombin G20210A, and MTHFR C677T mutations to the genetic susceptibility of deep venous thrombosis. Journal of Thrombosis, 19, 189-196. doi:10.1007/s11239-005-1313-x
[36] Branco, C.C., Pereirinha, T., Cabral, R., Pacheco, P.R. and Mota-Vieira, L.(2009) Thrombotic genetic risk factors and warfarin pharmacogenetic variants in Sao Miguel’s healthy population (Azores). Thrombosis Journal, 7, 9. doi:10.1186/1477-9560-7-9
[37] Freitas, A.I., Mendonca, I., Guerra, G., Brión, M., et al. (2008) Methylenetetrahydrofolate reductase gene, ho- mocysteine and coronary artery disease: the A1298C polymorphism does matter. Inferences from a case study (Madeira, Portugal). Thrombosis Research, 122, 648-656. doi:10.1016/j.thromres.2008.02.005
[38] Hanson, N.Q., Aras, O., Yang, F. and Tsai, M.Y. (2001) C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clinical Chemistry, 47, 661-666.
[39] Van der Put, N.., Gabreels, F., Stevens, E., Smeitink, J., et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? The American Journal of Human Genetics, 62, 1044-1051. doi:10.1086/301825

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.