Physical-Properties of Oxygen-Deficient Co-Based Perovskites: Co(Sr1-xYx)O3–δ (0.05 ≤ x ≤ 0.4)
Sarkarainadar Balamurugan
.
DOI: 10.4236/wjcmp.2011.14021   PDF    HTML     3,952 Downloads   8,330 Views   Citations

Abstract

In this work, the syntheses and characterization of oxygen deficient perovskite cobalt oxides prepared under ambient pressure conditions with different “x” in the Co(Sr1-xYx)O3–δ; 0.05 ≤ x ≤ 0.4 series are reported. The system studied in the present investigation undergoes structural phase transition at room temperature from cubic to tetragonal symmetry. The samples with x ≥ 0.2 show a tetragonal structure with I4/mmm space group, while the samples with 0.05 ≤ x ≤ 0.15 reveal cubic with pm3m group symmetry. Quite similar to Ho-substituted system [J. Appl. Phys. 103, 07B903 (2008)], the present Y-doped magnetization data clearly show the appearance of an enhanced ferromagnetic component at ~350 K for 0.15 ≤ x ≤ 0.225. Unlike the Ho-substituted system, the present narrow compositions behave as hard ferromagnet with quite high coercive field, Hc = 11.02, 12.25 and 14.0 kOe for x = 0.15, 0.2 and 0.225 compositions, respectively at T = 10 K. All the compositions show a semiconducting-like behaviour and some interesting features of temperature dependence of magnetoresistance (MR) are observed. The Co(Sr1-xYx)O3–δ samples seemly to obey variable range hopping conduction model showing a linear ln ρ versus T–1/4 dependence at the temperature range 80 K ≤ T ≤ 300 K.

Share and Cite:

S. Balamurugan, "Physical-Properties of Oxygen-Deficient Co-Based Perovskites: Co(Sr1-xYx)O3–δ (0.05 ≤ x ≤ 0.4)," World Journal of Condensed Matter Physics, Vol. 1 No. 4, 2011, pp. 145-152. doi: 10.4236/wjcmp.2011.14021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. O. Troyanchuk, N. V. Kasper, D. D. Khalyavin, H. Szymc- zak, R. Szymczak and M. Baran, “Magnetic and Electri- cal Transport Properties of Orthocobaltites R0.5Ba0.5CoO3 (R = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy),” Physical Review B, Vol. 58, No. 5, 1998, pp. 2418-2421. doi:10.1103/PhysRevB.58.2418
[2] R. L. Withers, M. James and D. J. Goossens, “Atomic Or- dering in the Doped Rare Earth Cobaltates Ln0.33Sr0.67 CoO3?δ (Ln = Y3+, Ho3+ and Dy3+),” Journal of Solid State Chemistry, Vol. 174, No. 1, 2003, pp. 198-208. doi:10.1016/S0022-4596(03)00227-5
[3] S. Ya. Istomin, J. Grins, G. Svensson, O. A. Drozhzhin, V. L. Kozhevnikov, E. V. Antipov and J. P. Attfield, “Crys- tal Structure of the Novel Complex Cobalt Oxide Sr0.7 Y0.3CoO2.62,” Chemistry of Materials, Vol. 15, No. 21, 2003 pp. 4012-4020. doi:10.1021/cm034263e
[4] M. James, D. Cassidy, K. F. Wilson, J. Horvat and R. L. Wi- thers, “Oxygen Vacancy Ordering and Magnetism in the Rare Earth Stabilised Perovskite Form of ‘SrCoO3?δ’,” Solid State Sciences, Vol. 6, No. 7, 2004, pp. 655-662. doi:10.1016/j.solidstatesciences.2003.03.001
[5] S. Ya. Istomin, O. A. Drozhzhin, G. Svensson and E. V. Antipov, “Synthesis and Characterization of Sr1?xLnx CoO3?δ, Ln = Y, Sm-Tm, 0.1 x 0.5,” Solid State Sci- ences, Vol. 6, No. 6, 2004, pp. 539-546. doi:10.1016/j.solidstatesciences.2004.03.029
[6] D. J. Goossens, K. F. Wilson, M. James, A. J. Studer and X. L. Wang, “Structural and Magnetic Properties of Y0.33 Sr0.67CoO2.79,” Physical Review B, Vol. 69, No. 13, 2004, pp. 134411(1-6).
[7] W. Kobayashi, S. Ishiwata, I. Terasaki, M. Takano, I. Grigoraviciute, H. Yamauchi and M. Karppinen, “Room- Temperature Ferromagnetism in Sr1?xYxCoO3?δ (0.2 ≤ x ≤ 0.25),” Physical Review B, Vol. 72, No. 10, 2005, p. 104408. doi:10.1103/PhysRevB.72.104408
[8] A. Maignan, S. Hébert, V. Caignaert, V. Pralong and D. Pelloquin, “Sr2/3Y1/3CoO8/3+δ: Transition from Insulating Antiferromagnet to Metallic Ferromagnet by Control of the Oxygen Content,” Journal of Solid State Chemistry, Vol. 178, No. 3, 2005, pp 868-873. doi:10.1016/j.jssc.2004.12.014
[9] W. Kobayashi, S. Yoshida and I. Terasaki, “Unusual Im- purity Effect on Room Temperature Ferromagnet Sr3Y Co4O10.56,” Proceedings of International Conference on Perovskites-Properties and Potential Applications, Duben- dorf, 5-7 September 2005.
[10] S. Fukushima, T. Sato, D. Akahoshi and H. Kuwahara, “Comparative Study of Ordered and Disordered Y1?xSrx CoO3?δ,” Journal of Applied Physics, Vol. 103, No. 7, 2008, pp. 07F705(1-3).
[11] S. Kimura, Y. Maeda, T. Kashiwagi, H. Yamaguchi, M. Hagiwara, S. Yoshida, I. Terasaki and K. Kindo, “Field- induced Spin-State Transition in the Perovskite Cobalt Oxide Sr1?xYxCoO3?δ,” Physical Review B, Vol. 78, No. 18, 2008, pp. 180403(R)(1-4).
[12] S. Balamurugan and E. Takayama-Muromachi, “Structu- ral and Magnetic Properties of High-Pressure/High-Tem- perature Synthesized (Sr1–xRx)CoO3 (R = Y and Ho) Pe- rovskites,” Journal of Solid State Chemistry, Vol. 179, No. 7, 2006, pp. 2231-2236.
[13] V. Petricek, M. Dusek and L. Palatinus, “JANA2006, The Crystallographic Computing System,” Institute of Physics, Praha, 2006.
[14] M. James, D. Cassidy, D. J. Goossens and R. L. Withers, “The Phase Diagram and Tetragonal Superstructures of the Rare Earth Cobaltate Phases Ln1?xSrxCoO3–δ (Ln = La3+, Pr3+, Nd3+, Sm3+, Gd3+, Y3+, Ho3+, Dy3+, Er3+, Tm3+ and Yb3+),” Journal of Solid State Chemistry, Vol. 177, No. 6, 2004, pp. 1886-1895. doi:10.1016/j.jssc.2004.01.012
[15] S. Balamurugan, K. Yamaura, A. Asthana, A. Ubaldini, Y. Matsui, and E. Takayama-Muromachi, “Magnetic and Transport and Structure Properties of the Room Tem- perature Ferromagneto Sr1?xHoxCoO3?δ,” Journal of Ap- plied Physics, Vol. 103, No. 7, 2008, pp. 07B903(1-3).

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.