The antinociceptive role of central arginine vasopressin is involved in the endogenous opiate peptide, serotonin and acetylcholine systems

Abstract

Our previous work has demonstrated that arginine vasopressin (AVP) plays a role in pain modulation. The present study investigated which kinds of neuropeptides and neurotransmitters in central nervous system might be involved in AVP antinociceptive role in the rat. The results showed that (1) intraventricular injection (icv) of V1 receptor antagonist [d(CH2)5Tyr(Me)AVP] and V2 receptor antagonist [d(CH2)5[D-Ile2, Ile4, Ala9-NH2]AVP] blocked the antinociceptive effect induced by AVP (icv), (2) the opiate recaptor antagonist (naloxone) reversed the antinociceptive effect induced by AVP (icv), and (3) both the serotonin receptor antagonist (cypoheptadine) and M receptor antagonist (atropine) could attenuate the antinociceptive effect induced by AVP (icv); but (4) oxytocin, dopamine, N-methyl-D-aspartate (NMDA), γ-aminobutyric acid (GABA), N, α or β receptor antagonist did not influence the antinociceptive effect induced by AVP (icv). The data suggested that AVP antinociceptive role was involved in the endogenous opiate peptide, serotonin and acetylcholine systems in central nervous system.

Share and Cite:

Li, X. , Yang, J. , Yan, X. , Pan, Y. , Zhao, Y. , Qiu, P. , Zhou, X. and Wang, D. (2011) The antinociceptive role of central arginine vasopressin is involved in the endogenous opiate peptide, serotonin and acetylcholine systems. World Journal of Neuroscience, 1, 49-54. doi: 10.4236/wjns.2011.13008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Aziz, H., Pearce, J. and Miller, E. (1968) Vasopressin in prevention of lumbar puncture headache. British Medical Journal, 4, 677-678. doi:10.1136/bmj.4.5632.677
[2] Martin, J.B., Reichlan, S. and Bick, K.L. (1981) Neurosecretion and brain peptides. Raven Press, New York.
[3] McEwen, B.B. (2004) The role of vasopressin and oxytocin in memory processing. Elsevier, Amsterdam.
[4] Berkowitz, B.A. and Sherman, S. (1982) Characterization of vasopressin analgesia. Journal of Pharmacology and Experimental Therapeutics, 220, 329-334.
[5] Berson, B.S., Berntson, G.G., Zipf, W., Torello, M.W. and Kirk, W.T. (1983) Vasopressin-induced antinociception: An investigation into its physiological and hormonal basis. Endocrinology, 113, 337-343. doi:10.1210/endo-113-1-337
[6] Kendler, K.S., Weitzman, R.E. and Fisher, D.A. (1978) The effect of pain on plasma arginine vasopressin concentrations in man. Clinical Endocrinology (Oxf), 8, 89-94. doi:10.1111/j.1365-2265.1978.tb02156.x
[7] Madrazo, I., Franco-Bourland, R.E., Leon-Meza, V.M. and Mena, I. (1987) Intraventricular somatostatin-14, arginine vasopressin, and oxytocin: analgesic effect in a patient with intractable cancer pain. Applied Neurophysiology, 50, 427-431.
[8] Yang, J., Song, C.Y., Liu, W.Y. and Lin, B.C. (2006) Only through the brain nuclei, arginine vasopressin regulates antinociception in the rat. Peptides, 27, 3341-3346. doi:10.1016/j.peptides.2006.08.019
[9] Yang, J., Yang, Y., Wang, C.H., Wang, G., Xu, H.T., Liu, W.Y. and Lin, B.C. (2009) Effect of arginine vasopressin on acupuncture analgesia in the rat. Peptides, 30, 241-247. doi:10.1016/j.peptides.2008.10.013
[10] Weng, N.Q. (1988) Pain and analgesia. Shanghai Science Press, Shanghai.
[11] Yang, J. (1994) Intrathecal administration of oxytocin induces analgesia in low back pain involving the endogenous opiate peptide system. Spine, 19, 867-871. doi:10.1097/00007632-199404150-00001
[12] Yang, J., Yang, Y., Chen, J.M., Liu, W.Y., Wang, C.H. and Lin, B.C. (2007) Central oxytocin enhances antinociception in the rat. Peptides, 28, 1113-1119. doi:10.1016/j.peptides.2007.03.003
[13] Yang, J., Yang, Y., Chen, J.M., Liu, W.Y., Wang, C.H. and Lin, B.C. (2007) Effect of oxytocin on acupuncture analgesia in the rat. Neuropeptides, 41, 285-292. doi:10.1016/j.npep.2007.05.004
[14] Zimmermann, M. (1983) Ethical guidelines for investigations of experimental pain in conscious animal. Pain, 16, 109-110. doi:10.1016/0304-3959(83)90201-4
[15] Dorner, G. and Kawakamin, M. (1978) Hormones and brain development. Elsevier, Amsterdam.
[16] Yang, J. and Lin, B.C. (1992) Hypothalamic paraventricular nucleus plays a role in acupuncture analgesia through the central nervous system in the rat. Acupuncture Electro-Therapeutics Research, 17, 209-220.
[17] Shiraishi, T., Onoe, M., Kojima, T., Sameshima, Y. and Kageyama, T. (1995) Effects of hypothalamic paraventricular nucleus: Electrical stimulation produce marked nalgesia in rats. Neurobiology (Bp), 3, 393-403.
[18] Yang, J., Chen, J.M., Liu, W.Y., Song, C.Y. and Lin, B.C. (2008) Investigating the role of hypothalamic paraventricular nucleus in nociception of the rat. International Journal of Neuroscience, 118, 473-485. doi:10.1080/00207450601123563
[19] Yang, J., Yang, Y., Chen, J.M., Liu, W.Y., Wang, C.H. and Lin, B.C. (2008) Effect of hypothalamic supraoptic nucleus on acupuncture analgesia in the rat. Brain Research Bull, 75, 681-686. doi:10.1016/j.brainresbull.2007.11.004
[20] Yang, J., Yang, Y., Chen, J.M., Liu, W.Y., Wang, C.H. and Lin, B.C. (2008) Investigating the role of the hypothalamic supraoptic nucleus in nociception in the rat. Life Science, 82, 166-173. doi:10.1016/j.lfs.2007.10.023
[21] Bodnar, R.J., Nilaver, G., Wallace, M.M., Badillo-Martinez, D. and Zimmerman, E.A. (1984) Pain threshold changes in rats following central injection of beta-endorphin, met-enkephalin, vasopressin or oxytocin antisera. International Journal of Neuroscience, 24, 149-160. doi:10.3109/00207458409089803
[22] Yang, J., Yang, Y., Chen, J.M., Xu, H.T., Liu, W.Y., Wang, C.H. and Lin, B.C. (2007) Arginine vasopressin is an important regulator in antinociceptive modulation of hypothalamic paraventricular nucleus in the rat. Neuropeptides, 41, 165-176. doi:10.1016/j.npep.2006.12.005
[23] Antunes, J.L. and Zimmerman, E.A. (1978) The hypothalamic magnocellular system of the rhesus monkey: An immunocytochemical study. Journal of Comparative Neurology, 81, 539-565. doi:10.1002/cne.901810306
[24] Swanson, L.W. and Sawchenko, P.E. (1980) Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Research, 198, 190-195. doi:10.1016/0006-8993(80)90354-6
[25] Yang, J., Yang, Y., Xu, H.T., Chen, J.M., Liu, W.Y. and Lin, B.C. (2006) Arginine vasopressin enhances periaqueductal grey synthesis and secretion of enkephalin and endorphin in the rat. Brain Research Bull, 71, 193-199. doi:10.1016/j.brainresbull.2006.09.003
[26] Yang, J., Yang, Y., Chen, J.M., Xu, H.T., Liu, W.Y. and Lin, B.C. (2007) Arginine vasopressin in periaqueductal gray, which relates to antinociception, comes from hypothalamic paraventricular nucleus in the rat. Neuroscience Letters, 412, 154-158. doi:10.1016/j.neulet.2006.10.049
[27] Bowker, R.M., Westlund, K.N., Sullivan, M.C. and Coulter, J.D. (1982) Organization of descending serotonergic projections to the spinal cord. Prog Brain Research, 57, 239-265. doi:10.1016/S0079-6123(08)64132-1
[28] Jones, S.L. and Light, A.R. (1990) Electrical stimulation in the medullary nucleus raphe magnus inhibits noxious heat-evoked protein-like immunoreactivity in the rat lumbar spinal cord. Brain Research, 530, 335-538. doi:10.1016/0006-8993(90)91306-2
[29] Basbaum, A.I. and Fields, H.L. (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. Journal of Comparative Neurology, 187, 513-532. doi:10.1002/cne.901870304
[30] Fields, H.L. and Besson, J.M. (1988) Progress in brain research, Pain modulation. Elsevier, Amsterdam, 77.
[31] Sandkuhler, J. (1996) The organization and function of endogenous antinociceptive systems. Prog Neurobiology, 50, 49-81. doi:10.1016/0301-0082(96)00031-7
[32] Myers, R.D., Rezvani, A.H. and Gurley-Orkin, L.A. (1985) New doublelumen polyethylene cannula for push-pull perfusion of brain tissue in vivo. Journal of Neuroscience Methods, 12, 205-218. doi:10.1016/0165-0270(85)90003-2
[33] Gogas, K.R., Presley, R.W., Levine, J.D. and Basbaum, A.I. (1991) The antinociceptive action of supraspinal opioids results from an increase in descending inhibitory control: Correlation of nociceptive behavior and c-fos expression. Neuroscience, 42, 617-628. doi:10.1016/0306-4522(91)90031-I
[34] Proudfit, H.K. and Anderson, E.G. (1975) Morphine analgesia: Blockade by raphe magnus lesions. Brain Research, 98, 612-618. doi:10.1016/0006-8993(75)90380-7
[35] Newman, M.E. (1985) Vasopressin inhibits cyclic AMP accumulation and adenylate activity cerebral preparation. FEBS Letters, 181, 203-206. doi:10.1016/0014-5793(85)80260-X
[36] Brodie, M.S. and Proudfit, H.K. (1986) Antinociception induced by local injections of carbachol into the nucleus raphe magnus in rats: Alteration by intrathecal injection of monoaminergic antagonists. Brain Research, 371, 70-79. doi:10.1016/0006-8993(86)90811-5
[37] Albers, H.E., Karom, M. and Smith, D. (2002) Serotonin and vasopressin interact in the hypothalamus to control communicative behavior. NeuroReport, 13, 931-933. doi:10.1097/00001756-200205240-00006
[38] Ferris, C.F. and Delville, Y. (1994) Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology, 19, 593-601. doi:10.1016/0306-4530(94)90043-4
[39] Yang, J., Chen, J.M., Liu, W.Y., Song, C.Y. and Lin, B.C. (2006) Arginine vasopressin in the caudate nucleus plays an antinociceptive role in the rat. Life Science, 79, 2086-2090. doi:10.1016/j.lfs.2006.07.005
[40] Courtney, N. and Raskind, M. (1983) Vasopressin affects adenylate cyclase activity in rat brain: A possible neuromodulator. Life Science, 7, 591-596. doi:10.1016/0024-3205(83)90203-5
[41] Pefracca, F.M., Baskin, D.G., Diaz, J. and Dorsa, O.M. (1986) Ontogenetic changes in vasopressin binding site distribution in rat brain: An autoradiographic study. Brain Research, 393, 63-68.
[42] Yang, J., Chen, J.M., Liu, W.Y., Song, C.Y., Lin, B.C. (2006) Effect of arginine vasopressin in the nucleus raphe magnus on antinociception in the rat. Peptides, 27, 2224-2229.
[43] Yang, J., Chen, J.M., Liu, W.Y., Song, C.Y., Lin, B.C. (2006) Through V2, not V1 receptor relating to endogenous opiate peptides, arginine vasopressin in periaqueductal gray regulates antinociception in the rat. Regulatory Peptides, 137, 156-161.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.