Share This Article:

Thermoelectric Power of Cu-Zn Ferrites

Abstract Full-Text HTML Download Download as PDF (Size:507KB) PP. 1572-1577
DOI: 10.4236/msa.2011.211210    6,016 Downloads   9,633 Views   Citations


A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a deferential method. The results showed a negative value for the Seebeck coefficient S for all samples, and all compositions exhibited an n-type semiconductors behavior in the measured range of temperature. The values of charge carrier concentration n and the Fermi energy were determined. The values of n were found to decrease as temperature increased, while Fermi energy directed to more negative values when Zn content is increased. On the basis of these results a mechanism for the conduction in Cu-Zn ferrites is suggested and the properties of the mention compounds were determined.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Dawoud, "Thermoelectric Power of Cu-Zn Ferrites," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1572-1577. doi: 10.4236/msa.2011.211210.


[1] P. K. Roy and J. Bera, “Enhancement of the Magnetic Properties of Ni-Cu-Zn Ferrites with the Substitution of a Small Fraction of Lanthanum for Iron,” Materials Re- search Bulletin, Vol. 42, No. 1, 2007, pp. 77-83. doi:10.1016/j.materresbull.2006.05.009
[2] I. Z. Rahman and T. T. Ahemed, “A Study on Cu Substituted Chemically Processed Ni-Zn-Cu Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 290-291, 2005, pp. 1576-1579. doi:10.1016/j.jmmm.2004.11.250
[3] D. Ravinder, “Thermoelectric Power and Electric Conductivity of Cd—Substituted Copper Ferrite,” Materials Letters, Vol. 44, No. 3-4, 2000, pp. 130-138. doi:10.1016/S0167-577X(00)00015-X
[4] A. Gonchar, V. Andreev, L. Letyuk, A. Shishkanov and V. Maiorov, “Problems of Increasing of Thermostability of Highly Permeable Ni-Zn Ferrites and Relative Materials for Telecommunications,” Journal of Magnetism and Magnetic Materials, Vol. 254-255, 2003, pp. 544-546. doi:10.1016/S0304-8853(02)00860-0
[5] M. C. Dimri, A. K. Verma, S. C. Kashyap, D. C. Dube and O. P. Thakur, “Structural, Dielectric and Magnetic Properties of NiCuZn Ferrite Grown by Citrate Precursor Method,” Materials Science and Engineering: B, Vol. 133, No. 1-3, 2006, pp. 42-48. doi:10.1016/j.mseb.2006.04.043
[6] P. A. Jadhav, R. S. Devan, Y. D. Kolekar and B. K. Chougule, “Structural, Electrical and Magnetic Charac- terizations of Ni-Cu-Zn Ferrite Synthesized by Citrate Precursor Method,” Journal of Physics and Chemistry of Solids, Vol. 70, No. 2, 2009, pp. 396-400. doi:10.1016/j.jpcs.2008.11.019
[7] D. Ravinder, “Thermoelectric Power Studies of Zinc Sub- stituted Copper Ferrite,” Journal of Alloys and Com- pounds, Vol. 291, No. 1-2, 2000, pp. 208-214. doi:10.1016/S0925-8388(99)00287-X
[8] K. V. Kumar and D. Ravinder, “Electrical Transport Properties of Erbium Substituted Ni-Zn Ferrite,” Inter- national Journal of Inorganic Materials, Vol. 3, No. 7, 2001, pp. 661-666. doi:10.1016/S1466-6049(01)00194-5
[9] S. A. Mazen, “Electrical Conductivity and Thermoelectric Power of Cu-Ti Ferrite,” Materials Chemistry and Physics, Vol. 56, No. 2, 1998, pp. 102-107. doi:10.1016/S0254-0584(98)00136-9
[10] S. A. Mazen and A. Elfalaky, “Thermoelectric Power and Electrical Conductivity of Cu-Ti Ferrite,” Journal of Magnetism and Magnetic Materials, Vol. 195, No. 1, 1999, pp. 148-155. doi:10.1016/S0304-8853(98)00348-5
[11] B. L. Patil, S. R. Sawant and S. A. Patil, “Electrical and Magnetic Studies of Ba3Co2Fe23–12xMn12xO4 Hexafer- rites Type,” Physical State Solid (A), Vol. 133, No. 1-2, 1992, p. 147.
[12] P. V. Reddy, V. D. Reddy and D. Ravinder, “Ther- mopower Studies of Lithium-Zinc Mixed Ferrites,” Phy- sical State Solid (A), Vol. 127, No. 2, 1991, pp. 439-450.
[13] R. Manjula, V. R. K. Murthy and J. Sobhandri, “Electric Conduction in Ni-Zn Ferrite,” Journal of Applied Physics, Vol. 59, No. 5, 1986, p. 2929.
[14] H. A. Dawoud and S. K. K. Shaat, “Initial Permeability and Conductivity of Cu-Zn Ferrite,” Islamic University Journal, Vol. 14, No. 1, 2006, pp. 165-182.
[15] C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian and K. Chottopdhyay, “Size Dependent Magnetic Behavior of Noncrystalline Spinel Ferrite,” Journal Materials Science and Engineering A, Vol. 304, 2001, p. 983. doi:10.1016/S0921-5093(00)01611-7
[16] C. C. Wu, S. Krishnan and T. O. Mason, “Thermopower Composition Dependence in Ferrospinel,” Journal of Solid State Chemistry, Vol. 37, No. 2, 1981, pp. 144-150. doi:10.1016/0022-4596(81)90079-7
[17] H. M. Zaki and H. A. Dawoud, “Far Infrared Spectra for Cooper-Zinc Mixed Ferrite,” Physica B: Condensed Matter, Vol. 405, No. 21, 2010, p. 4479. doi:10.1016/j.physb.2010.08.018
[18] F. J. Morin, “Charge Carrier and Mobility of Cu-Ti Fer- rite,” Physical Review, Vol. 93, 1970, p. 433.
[19] A. J. Bosman and C. Crevecoevr, “Electrical Conduction in Li-Doped CoO,” Journal of Physics and Chemistry of Solids, Vol. 30, No. 5, 1969, pp. 1151-1160. doi:10.1016/0022-3697(69)90372-2

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.