Proteomic progress in studying tuberculosis from 2010 to 2011
Lijun Zhang, Douglas Lowrie, Honghao Zhou
.
DOI: 10.4236/jbpc.2011.24045   PDF    HTML   XML   5,460 Downloads   9,939 Views   Citations

Abstract

It is well accepted that rapid and early detection of Mycobacterium tuberculosis infection and understanding the mechanism of microbiologyhost interaction. Herein, we review the recently published papers related to TB proteomics from 2010 to 2011, including new technologies used in TB proteome research, diagnosis biomarkers of TB-associated diseases, disease pathogenesis and antigens for drug development. Through this review, we wish to offer some help for TB diagnosis and treatment.

Share and Cite:

Zhang, L. , Lowrie, D. and Zhou, H. (2011) Proteomic progress in studying tuberculosis from 2010 to 2011. Journal of Biophysical Chemistry, 2, 395-400. doi: 10.4236/jbpc.2011.24045.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Prasad, R. (2010) Multidrug and extensively drug-resis- tant TB (M/XDR-TB): Problems and solutions. Indian Journal of Tuberculosis, 57, 180-191.
[2] Ahmad, S. (2010) New approaches in the diagnosis and treatment of latent tuberculosis infection. Respiratory Research, 11, 169. doi:10.1186/1465-9921-11-169
[3] (2010) WHO global tuberculosis control report 2010. Summary. Central European Journal of Public Health, 18, 237.
[4] Sendagire, I., Schim Van der Loeff, M., Mubiru, M., Konde-Lule, J. and Cobelens, F. (2010) Long delays and missed opportunities in diagnosing smear-positive pul- monary tuberculosis in Kampala, Uganda: A cross-sec- tional study. PLoS One, 5, e14459. doi:10.1371/journal.pone.0014459
[5] Bailey, S.L., Roper, M.H., Huayta, M., Trejos, N., Lopez Alarcon, V. and Moore, D.A. (2010) Missed opportunities for tuberculosis diagnosis. The International Journal of Tuberculosis and Lung Disease, 15, 205-210.
[6] Liu, Q., Chen, X., Hu, C., Zhang, R., Yue, J., Wu, G., et al. (2010) Serum protein profiling of smear-positive and smear-negative pulmonary tuberculosis using SELDI- TOF mass spectrometry. Lung, 188, 15-23. doi:10.1007/s00408-009-9199-6
[7] Malen, H., De Souza, G.A., Pathak, S., Softeland, T. and Wiker, H.G. (2011) Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. BMC Microbiology, 11, 18. doi:10.1186/1471-2180-11-18
[8] Bhavsar, A.P., Auweter, S.D. and Finlay, B.B. (2010) Pro- teomics as a probe of microbial pathogenesis and its mo- lecular boundaries. Future Microbiology, 5, 253-265. doi:10.2217/fmb.09.114
[9] Boshoff, H.I. and Lun, D.S. (2010) Systems biology ap- proaches to understanding mycobacterial survival mecha- nisms. Drug Discovery Today: Disease Mechanisms, 7, 75-82. doi:10.1016/j.ddmec.2010.09.008
[10] Shui, W., Petzold, C.J., Redding, A., Liu, J., Pitcher, A., Sheu, L., et al. (2011) Organelle membrane proteomics reveals differential influence of mycobacterial lipogly- cans on macrophage phagosome maturation and auto- phagosome accumulation. Journal of Proteome Research, 10, 339-348. doi:10.1021/pr100688h
[11] Mehaffy, C., Hess, A., Prenni, J.E., Mathema, B., Krei- swirth, B. and Dobos, K.M. (2010) Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Pro- teomics, 10, 1966-1984. doi:10.1002/pmic.200900836
[12] Kunnath-Velayudhan, S., Salamon, H., Wang, H.Y., Davi- dow, A.L., Molina, D.M., Huynh, V.T., et al. (2010) Dy- namic antibody responses to the Mycobacterium tuber- culosis proteome. Proceedings of the National Academy of Sciences of the United States of America, 107, 14703- 14708. doi:10.1073/pnas.1009080107
[13] Deenadayalan, A., Heaslip, D., Rajendiran, A.A., Velayu- dham, B.V., Frederick, S., Yang, H.L., et al. (2010) Im- munoproteomic identification of human T cell antigens of Mycobacterium tuberculosis that differentiate healthy contacts from tuberculosis patients. Molecular & Cellular Proteomics, 9, 538-549. doi:10.1074/mcp.M900299-MCP200
[14] de Souza, G.A., Fortuin, S., Aguilar, D., Pando, R.H., McEvoy, C.R., van Helden, P.D., et al. (2010) Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hyperviru- lent clinical Mycobacterium tuberculosis Beijing isolates. Molecular & Cellular Proteomics, 9, 2414-2423. doi:10.1074/mcp.M900422-MCP200
[15] Festa, R.A., McAllister, F., Pearce, M.J., Mintseris, J., Burns, K.E., Gygi, S.P. and Darwin, K.H. (2010) Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS One, 5, 8589. doi:10.1371/journal.pone.0008589
[16] Poulsen, C., Akhter, Y., Jeon, A.H., Schmitt-Ulms, G., Meyer, H.E., Stefanski, A., et al. (2010) Proteome-wide identification of mycobacterial pupylation targets. Molecular Systems Biology, 6, 386. doi:10.1038/msb.2010.39
[17] Watrous, J., Burns, K., Liu, W.T., Patel, A., Hook, V., Bafna, V., et al. (2010) Expansion of the mycobacterial “PUPylome”. Molecular Biosystems, 6, 376-385. doi:10.1039/b916104j
[18] Prisic, S., Dankwa, S., Schwartz, D., Chou, M.F., Lo- casale, J.W., Kang, C.M., et al. (2010) Extensive phos- phorylation with overlapping specificity by Mycobacte- rium tuberculosis serine/threonine protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 107, 7521-7526. doi:10.1073/pnas.0913482107
[19] Wolfe, L.M., Mahaffey, S.B., Kruh, N.A. and Dobos K.M. (2010) Proteomic definition of the cell wall of Mycobacterium tuberculosis. Journal of Proteome Research, 9, 5816-5826. doi:10.1021/pr1005873
[20] Berredo-Pinho, M., Kalume, D.E., Correa, P.R., Gomes, L.H., Pereira, M.P., Silva, R.F., et al. ( 2011) Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bo- vis BCG Pasteur. BMC Microbiology, 11, 80. doi:10.1186/1471-2180-11-80
[21] Zheng, J., Wei, C., Zhao, L., Liu, L., Leng, W., Li, W. and Jin, Q. (2011) Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing poten- tial membrane protein complexes of Mycobacterium bo- vis bacillus Calmette-Guerin. BMC Genomics, 12, 40. doi:10.1186/1471-2164-12-40
[22] Kashyap, R.S., Saha, S.M., Nagdev, K.J., Kelkar, S.S., Purohit, H.J., Taori, G.M. and Daginawala, H.F. (2010) Diagnostic markers for tuberculosis ascites: A prelimi- nary study. Biomark Insights, 5, 87-94.
[23] Desouza, G.A., Fortuin, S., Aguilar, D., Pando, R.H., Mc Evoy, C.R., van Helden, P.D., et al. (2010) Using a label-free proteomic method to identify differentially abun- dant proteins in closely related hypo- and hyper-virulent clinical Mycobacterium tuberculosis Beijing isolates. Mo- lecular & Cellular Proteomics, 9, 2414-2423. doi:10.1074/mcp.M900422-MCP200
[24] Tanaka, T., Sakurada, S., Kano, K., Takahashi, E., Yasuda, K., Hirano, H., et al. (2011) Identification of tuberculo- sis-associated proteins in whole blood supernatant. BMC Infectious Diseases, 11, 71. doi:10.1186/1471-2334-11-71
[25] Estorninho, M., Smith, H., Thole, J., Harders-Westerveen, J., Kierzek, A., Butler, R.E., et al. (2010) ClgR regulation of chaperone and protease systems is essential for Myco- bacterium tuberculosis parasitism of the macrophage. Microbiology, 156, 3445-3455. doi:10.1099/mic.0.042275-0
[26] White, M.J., Savaryn, J.P., Bretl, D.J., He, H., Penoske, R.M., Terhune, S.S. and Zahrt, T.C. (2011) The HtrA-like serine protease PepD interacts with and modulates the mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One, 6, 18175. doi:10.1371/journal.pone.0018175
[27] Kruh, N.A., Troudt, J., Izzo, A., Prenni, J. and Dobos, K.M. (2010) Portrait of a pathogen: The Mycobacterium tuberculosis proteome in vivo. PLoS One, 5, 13938. doi:10.1371/journal.pone.0013938
[28] Lee, B.Y., Jethwaney, D., Schilling, B., Clemens, D.L., Gibson, B.W. and Horwitz, M.A. (2010) The mycobacterium bovis bacille calmette-guerin phagosome proteome. Molecular & Cellular Proteomics, 9, 32-53. doi:10.1074/mcp.M900396-MCP200
[29] Prados-Rosales, R., Baena, A., Martinez, L.R., Luque- Garcia, J., Kalscheuer, R., Veeraraghavan, U., et al. (2011) Mycobacteria release active membrane vesicles that mo- dulate immune responses in a TLR2-dependent manner in mice. The Journal of Clinical Investigation, Epub ahead of print. doi:10.1172/JCI44261
[30] van Dissel, J.T., Arend, S.M., Prins, C., Bang, P., Ting- skov, P.N., Lingnau, K., et al. (2010) Ag85B-ESAT-6 ad- juvanted with IC31 promotes strong and long-lived My- cobacterium tuberculosis specific T cell responses in na- ive human volunteers. Vaccine, 28, 3571-3581. doi:10.1016/j.vaccine.2010.02.094
[31] Dannenberg, A.M., Jr. (2010) Perspectives on clinical and preclinical testing of new tuberculosis vaccines. Clinical Microbiology Reviews, 23, 781-794. doi:10.1128/CMR.00005-10
[32] Millington, K.A., Fortune, S.M., Low, J., Garces, A., Hin- gley-Wilson, S.M., Wickremasinghe, M., et al. (2010) Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for My- cobacterium tuberculosis infection. Proceedings of the National Academy of Sciences of the United States of America, 108, 5730-5735. doi:10.1073/pnas.1015153108
[33] Giri, P.K., Kruh, N.A., Dobos, K.M. and Schorey, J.S. (2010) Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics, 10, 3190-3202. doi:10.1002/pmic.200900840
[34] Li, Y., Zeng, J., Shi, J., Wang, M., Rao, M., Xue, C., et al. (2010) A proteome-scale identification of novel anti- genic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development. Journal of Proteome Research, 9, 4812-4822. doi:10.1021/pr1005108
[35] Kinnings, S.L., Xie, L., Fung, K.H., Jackson, R.M., Xie, L. and Bourne, P.E. (2010) The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Computational Biology, 6, 1000976. doi:10.1371/journal.pcbi.1000976
[36] Lucchese, G., Stufano, A. and Kanduc, D. (2010) Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. Journal of Biomedicine and Biotechnology, 832341.
[37] Gaseitsiwe, S., Valentini, D., Mahdavifar, S., Reilly, M., Ehrnst, A. and Maeurer, M. (2010) Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1* 0401. Clinical and Vaccine Immunology, 17, 168- 175. doi:10.1128/CVI.00208-09

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.