Share This Article:

Obesity and type 2 diabetes

Abstract Full-Text HTML Download Download as PDF (Size:302KB) PP. 79-95
DOI: 10.4236/jdm.2011.14012    11,887 Downloads   27,875 Views   Citations

ABSTRACT

Obesity and type 2 diabetes (T2DM) are public health problems, with health consequences and economic costs that have raised concern worldwide. The increase in the prevalence of diabetes parallels that of obesity. Some experts call this dual epidemic ‘diabesity’ Elevated body mass index (BMI) and waist circumference (WC) were significantly associated T2DM. One consequence of obesity is an increased risk of developing T2DM. There is evidence that the prenatal, early childhood, and adolescent periods are critical in the development of obesity. Most obese individuals have elevated plasma levels of free fatty acids (FFA), which are known to cause peripheral (muscle) insulin resistance. Weight loss either with lifestyle modification, pharmacotherapy or bariatric surgery improves glycemic control and metabolic parameters that are related to cardiovascular disease. Pharmacotherapy for glycemic control with metformin or GLP-1 agonists and DPP-4 inhibitors help in weight reduction.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yaturu, S. (2011) Obesity and type 2 diabetes. Journal of Diabetes Mellitus, 1, 79-95. doi: 10.4236/jdm.2011.14012.

References

[1] WHO Technical Series (2000) Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization Technical Report Series, 894, 1-253.
[2] Guh, D.P., et al. (2009) The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health, 9, 88. doi:10.1186/1471-2458-9-88
[3] Flegal, K.M. and Troiano, R.P. (2000) Changes in the distribution of body mass index of adults and children in the US population. International Journal of Obesity and Related Metabolic Disorders, 24, 807-818. doi:10.1038/sj.ijo.0801232
[4] Franco, M., et al. (2010) Prevention of childhood obesity in Spain: A focus on policies outside the health sector. SESPAS Report 2010. Gaceta Sanitaria, 24, 49-55.
[5] Nguyen, N.T., et al. (2008) Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: Findings from the National Health and Nutrition Examination Survey, 1999 to 2004. Journal of the American College of Surgeons, 207, 928-934. doi:10.1016/j.jamcollsurg.2008.08.022
[6] Cefalu, W.T. (2001) Insulin resistance: Cellular and clinical concepts. Experimental Biology and Medicine (Maywood), 226, 13-26.
[7] Reaven, G. (2004) The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinology Metabolism Clinics of North America, 33, 283-303. doi:10.1016/j.ecl.2004.03.002
[8] Erkelens, D.W. (2001) Insulin resistance syndrome and type 2 diabetes mellitus. American Journal of Cardiology, 88, 38J-42J. doi:10.1016/S0002-9149(01)01883-5
[9] Colditz, G.A., et al. (1990) Weight as a risk factor for clinical diabetes in women. American Journal of Epidemiology, 132, 501-513.
[10] Ni Mhurchu, C., et al. (2006) Body mass index and risk of diabetes mellitus in the Asia-Pacific region. Asia Pacific Journal of Clinical Nutrition, 15, 127-133.
[11] Schienkiewitz, A., et al. (2006) Body mass index history and risk of type 2 diabetes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. The American Journal of Clinical Nutrition, 84, 427-433.
[12] Harris, M.I., et al. (1998) Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care, 21, 518-524. doi:10.2337/diacare.21.4.518
[13] Cowie, C.C., et al. (2006) Prevalence of diabetes and impaired fasting glucose in adults in the US population: National Health and Nutrition Examination Survey, 1999-2002. Diabetes Care, 29, 1263-1268. doi:10.2337/dc06-0062
[14] Snijder, M.B., et al. (2003) Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: The Hoorn study. The American Journal of Clinical Nutrition, 77, 1192-1197.
[15] Cassano, P.A., et al. (1992) Obesity and body fat distribution in relation to the incidence of non-insulin-dependent diabetes mellitus. A prospective cohort study of men in the normative aging study. American Journal of Epidemiology, 136, 1474-1486.
[16] Lundgren, H., et al. (1989) Adiposity and adipose tissue distribution in relation to incidence of diabetes in women: Results from a prospective population study in Gothenburg, Sweden. International Journal of Obesity, 13, 413-423.
[17] Ohlson, L.O., et al. (1985) The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes, 34, 1055-1058. doi:10.2337/diabetes.34.10.1055
[18] Qiao, Q. and Nyamdorj, R. (2010) Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index? European Journal of Clinical Nutrition, 64, 30-34. doi:10.1038/ejcn.2009.93
[19] Aucott, L.S. (2008) Influences of weight loss on long-term diabetes outcomes. Proceedings of the Nutrition Society, 67, 54-59. doi:10.1017/S0029665108006022
[20] Resnick, H.E., et al. (2000) Relation of weight gain and weight loss on subsequent diabetes risk in overweight adults. Journal of Epidemiology & Community Health, 54, 596-602. doi:10.1136/jech.54.8.596
[21] Mokdad, A.H., et al. (2000) Diabetes trends in the US: 1990-1998. Diabetes Care, 23, 1278-1283. doi:10.2337/diacare.23.9.1278
[22] Janssen, I., Katzmarzyk, P.T. and Ross, R. (2002) Body mass index, waist circumference, and health risk: Evidence in support of current National Institutes of Health guidelines. Archives of Internal Medicine, 162, 2074-2079. doi:10.1001/archinte.162.18.2074
[23] Liu, J., et al. (2010) Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: The Jackson Heart Study. The Journal of Clinical Endocrinology & Metabolism, 95, 5419-5426. doi:10.1210/jc.2010-1378
[24] Roelants, M., Hauspie, R. and Hoppenbrouwers, K. (2009) References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Annals of Human Biology, 36, 680-694. doi:10.3109/03014460903049074
[25] De Onis, M., et al. (2009) WHO growth standards for infants and young children. Archives of Pediatrics & Adolescent Medicine, 16, 47-53. doi:10.1016/j.arcped.2008.10.010
[26] Rolland-Cachera, M.F., et al. (1982) Adiposity indices in children. The American Journal of Clinical Nutrition, 36, 178-184.
[27] Cole, T.J., et al. (2007) Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ, 335, 194. doi:10.1136/bmj.39238.399444.55
[28] Tfayli, H. and Arslanian, S. (2009) Pathophysiology of type 2 diabetes mellitus in youth: The evolving chameleon. Arquivos Brasileiros de Endocrinologia & Metabologia, 53, 165-174. doi:10.1590/S0004-27302009000200008
[29] Weiss, R. and Caprio, S. (2005) The metabolic consequences of childhood obesity. Best Practice & Research: Clinical Endocrinology & Metabolism, 19, 405-419. doi:10.1016/j.beem.2005.04.009
[30] Aboul Ella, N.A., et al. (2010) Prevalence of metabolic syndrome and insulin resistance among Egyptian adolescents 10 to 18 years of age. Journal of Clinical Lipidology, 4, 185-195. doi:10.1016/j.jacl.2010.03.007
[31] Holst-Schumacher, I., et al. (2009) Components of the metabolic syndrome among a sample of overweight and obese Costa Rican schoolchildren. Food and Nutrition Bulletin, 30, 161-170.
[32] Verna, E.C. and Berk, P.D. (2008) Role of fatty acids in the pathogenesis of obesity and fatty liver: Impact of bariatric surgery. Seminars in Liver Disease, 28, 407-426. doi:10.1055/s-0028-1091985
[33] Hoppin, A.G. (2004) Obesity and the liver: Developmental perspectives. Seminars in Liver Disease, 24, 381-387. doi:10.1055/s-2004-860867
[34] Whitlock, E.P., et al. (2005) Screening and interventions for childhood overweight: A summary of evidence for the US Preventive Services Task Force. Pediatrics, 116, e125-e44. doi:10.1542/peds.2005-0242
[35] Barlow, S.E. and Dietz, W.H. (1998) Obesity evaluation and treatment: Expert Committee recommendations. The Maternal and Child Health Bureau, Health Resources and Services Administration and the Department of Health and Human Services. Pediatrics, 102, E29. doi:10.1542/peds.102.3.e29
[36] Thorn, J., et al. (2010) Overweight among four-year-old children in relation to early growth characteristics and socioeconomic factors. Journal of Obesity, Article ID: 580642. doi:10.1155/2010/580642
[37] Hermann, G.M., et al. (2009) Neonatal catch up growth increases diabetes susceptibility but improves behavioral and cardiovascular outcomes of low birth weight male mice. Pediatric Research, 66, 53-58. doi:10.1203/PDR.0b013e3181a7c5fd
[38] Bhargava, S.K., et al. (2004) Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. The New England Journal of Medicine, 350, 865-875. doi:10.1056/NEJMoa035698
[39] Forsen, T., et al. (2000) The fetal and childhood growth of persons who develop type 2 diabetes. Annals of Internal Medicine, 133, 176-182.
[40] Yajnik, C.S. (2004) Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. Journal of Nutrition, 134, 205-210.
[41] Jimenez-Chillaron, J.C. and Patti, M.E. (2007) To catch up or not to catch up: Is this the question? Lessons from animal models. Current Opinion in Endocrinology, Diabetes and Obesity, 14, 23-29. doi:10.1097/MED.0b013e328013da8e
[42] Jimenez-Chillaron, J.C., et al. (2006) Reductions in caloric intake and early postnatal growth prevent glucose intolerance and obesity associated with low birthweight. Diabetologia, 49, 1974-1984. doi:10.1007/s00125-006-0311-7
[43] Kaiser, N. and Leibowitz, G. (2009) Failure of beta-cell adaptation in type 2 diabetes: Lessons from animal models. Frontiers in Bioscience, 14, 1099-1115. doi:10.2741/3296
[44] Lowell, B.B. and Shulman, G.I. (2005) Mitochondrial dysfunction and type 2 diabetes. Science, 307, 384-387. doi:10.1126/science.1104343
[45] Kahn, S.E. (2001) Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 86, 4047-4058. doi:10.1210/jc.86.9.4047
[46] DeFronzo, R.A. (1988) Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes, 37, 667-687.
[47] Reaven, G.M. (1995) Pathophysiology of insulin resistance in human disease. Physiological Reviews, 75, 473-486.
[48] Ali, A.T., et al. (2011) Insulin resistance in the control of body fat distribution: A new hypothesis. Hormone metabolism Research, 43, 77-80.
[49] Wiklund, P., et al. (2008) Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women. The Journal of Clinical Endocrinology & Metabolism, 93, 4360-4366. doi:10.1210/jc.2008-0804
[50] Yamashita, S., et al. (1996) Insulin resistance and body fat distribution. Diabetes Care, 19, 287-291. doi:10.2337/diacare.19.3.287
[51] Kaplan, N.M. (1989) The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Archives of Internal Medicine, 149, 1514-1520. doi:10.1001/archinte.149.7.1514
[52] Frayn, K.N. (2000) Visceral fat and insulin resistance—causative or correlative? British Journal of Nutrition, 83, S71-S77. doi:10.1017/S0007114500000982
[53] Gallagher, D., et al. (2009) Adipose tissue distribution is different in type 2 diabetes. The American Journal of Clinical Nutrition, 89, 807-814. doi:10.3945/ajcn.2008.26955
[54] Sanchez-Castillo, C.P., et al. (2005) Diabetes and hypertension increases in a society with abdominal obesity: Results of the Mexican National Health Survey 2000. Public Health Nutrition, 8, 53-60. doi:10.1079/PHN2005659
[55] Merino-Ibarra, E., et al. (2005) Ultrasonography for the evaluation of visceral fat and the metabolic syndrome. Metabolism, 54, 1230-1235. doi:10.1016/j.metabol.2005.04.009
[56] Hayashi, T., et al. (2008) Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes, 57, 1269-1275. doi:10.2337/db07-1378
[57] Nyholm, B., et al. (2004) Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. European Journal of Endocrinology, 150, 207-214. doi:10.1530/eje.0.1500207
[58] Vettor, R., et al. (2005) Review article: Adipocytokines and insulin resistance. Alimentary Pharmacology & Therapeutics, 22, 3-10. doi:10.1111/j.1365-2036.2005.02587.x
[59] Aylin, P., Williams, S. and Bottle, A. (2005) Obesity and type 2 diabetes in children, 1996-1997 to 2003-2004. BMJ, 331, 1167. doi:10.1136/bmj.331.7526.1167
[60] Lee, S., Guerra, N. and Arslanian, S. (2010) Skeletal muscle lipid content and insulin sensitivity in black versus white obese adolescents: Is there a race differential? The Journal of Clinical Endocrinology & Metabolism, 95, 2426-2432. doi:10.1210/jc.2009-2175
[61] Chiarelli, F. and Marcovecchio, M.L. (2008) Insulin resistance and obesity in childhood. European Journal of Endocrinology, 159, S67-S74. doi:10.1530/EJE-08-0245
[62] Bacha, F., et al. (2003) Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: Race differential in diabetogenic and atherogenic risk factors. The Journal of Clinical Endocrinology & Metabolism, 88, 2534-2540. doi:10.1210/jc.2002-021267
[63] Goran, M.I., Bergman, R.N. and Gower, B.A. (2001) Influence of total vs. visceral fat on insulin action and secretion in African American and white children. Obesity Research, 9, 423-431. doi:10.1038/oby.2001.56
[64] Caprio, S. and Tamborlane, W.V. (1999) Metabolic impact of obesity in childhood. Endocrinology and Metabolism Clinics of North America, 28, 731-747. doi:10.1016/S0889-8529(05)70099-2
[65] Gower, B.A., Nagy, T.R. and Goran, M.I. (1999) Visceral fat, insulin sensitivity, and lipids in prepubertal children. Diabetes, 48, 1515-1521. doi:10.2337/diabetes.48.8.1515
[66] Abrams, P. and Levitt Katz, L.E. (2011) Metabolic effects of obesity causing disease in childhood. Current Opinion in Endocrinology, Diabetes and Obesity, 18, 23-27. doi:10.1097/MED.0b013e3283424b37
[67] Weiss, R. and Caprio, S. (2006) Altered glucose metabolism in obese youth. Pediatric Endocrinology Reviews, 3, 233-238.
[68] Lee, S., et al. (2006) Racial differences in adiponectin in youth: Relationship to visceral fat and insulin sensitivity. Diabetes Care, 29, 51-56. doi:10.2337/diacare.29.01.06.dc05-0952
[69] Bacha, F., et al. (2004) Adiponectin in youth: Relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care, 27, 547-552. doi:10.2337/diacare.27.2.547
[70] Rasmussen-Torvik, L.J., et al. (2009) Influence of waist on adiponectin and insulin sensitivity in adolescence. Obesity (Silver Spring), 17, 156-161. doi:10.1038/oby.2008.482
[71] Timmers, S., Schrauwen, P. and de Vogel, J. (2008) Muscular diacylglycerol metabolism and insulin resistance. Physiology & Behavior, 94, 242-251. doi:10.1016/j.physbeh.2007.12.002
[72] Boden, G. and Shulman, G.I. (2002) Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. European Journal of Clinical Investigation, 32, 14-23. doi:10.1046/j.1365-2362.32.s3.3.x
[73] Yu, C., et al. (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry, 277, 50230-50236. doi:10.1074/jbc.M200958200
[74] Mittelman, S.D., et al. (2002) Extreme insulin resistance of the central adipose depot in vivo. Diabetes, 51, 755-761. doi:10.2337/diabetes.51.3.755
[75] Griffin, M.E., et al. (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 48, 1270-1274. doi:10.2337/diabetes.48.6.1270
[76] Brunzell, J.D. and Ayyobi, A.F. (2003) Dyslipidemia in the metabolic syndrome and type 2 diabetes mellitus. American Journal of Medicine, 115, 24S-28S. doi:10.1016/j.amjmed.2003.08.011
[77] Purnell, J.Q., et al. (2000) Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. The Journal of Clinical Endocrinology & Metabolism, 85, 977-982. doi:10.1210/jc.85.3.977
[78] Barrett, J.F. (2001) Targeting DNA gyrase. Expert Opinion on Therapeutic Targets, 5, 531-533. doi:10.1517/14728222.5.4.531
[79] Koo, S.H. and Montminy, M. (2006) Fatty acids and insulin resistance: A perfect storm. Molecular Cell, 21, 449-450. doi:10.1016/j.molcel.2006.02.001
[80] Ginsberg, H.N. and Stalenhoef, A.F. (2003) The metabolic syndrome: Targeting dyslipidaemia to reduce coronary risk. Journal of Cardiovascular Risk, 10, 121-128. doi:10.1097/00043798-200304000-00007
[81] Ginsberg, H.N. (2000) Insulin resistance and cardiovascular disease. The Journal of Clinical Investigation, 106, 453-458. doi:10.1172/JCI10762
[82] Boden, G. (2001) Free fatty acids-the link between obesity and insulin resistance. Endocrine Practice, 7, 44-51.
[83] Boden, G. (2003) Effects of free fatty acids (FFA) on glucose metabolism: Significance for insulin resistance and type 2 diabetes. Experimental and Clinical Endo- crinology & Diabetes, 111, 121-124. doi:10.1055/s-2003-39781
[84] Lam, T.K., et al. (2002) Free fatty acid-induced hepatic insulin resistance: A potential role for protein kinase C-delta. American Journal of Physiology—Endocrinology and Metabolism, 283, E682-E691.
[85] Boden, G., et al. (2002) FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. American Journal of Physiology―Endocrinology and Metabolism, 283, E12-E19.
[86] Basu, R., et al. (2005) Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes, 54, 1942-1948. doi:10.2337/diabetes.54.7.1942
[87] Basu, R., et al. (2005) Obesity and type 2 diabetes do not alter splanchnic cortisol production in humans. The Journal of Clinical Endocrinology & Metabolism, 90, 3919-3926. doi:10.1210/jc.2004-2390
[88] Boden, G. (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 46, 3-10. doi:10.2337/diabetes.46.1.3
[89] Bonadonna, R.C., et al. (1990) Obesity and insulin resistance in humans: A dose-response study. Metabolism, 39, 452-459. doi:10.1016/0026-0495(90)90002-T
[90] Kolterman, O.G., et al. (1980) Mechanisms of insulin resistance in human obesity: Evidence for receptor and postreceptor defects. The Journal of Clinical Investigation, 65, 1272-1284. doi:10.1172/JCI109790
[91] Jensen, M.D. (2008) Role of body fat distribution and the metabolic complications of obesity. The Journal of Clinical Endocrinology & Metabolism, 93, S57-S63. doi:10.1210/jc.2008-1585
[92] Adiels, M., et al. (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1225-1236. doi:10.1161/ATVBAHA.107.160192
[93] Taskinen, M.R. (2005) Type 2 diabetes as a lipid disorder. Current Molecular Medicine, 5, 297-308. doi:10.2174/1566524053766086
[94] Wolfrum, C. and Stoffel, M. (2006) Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metabolism, 3, 99-110. doi:10.1016/j.cmet.2006.01.001
[95] Kamagate, A. and Dong, H.H. (2008) FoxO1 integrates insulin signaling to VLDL production. Cell Cycle, 7, 3162-3170. doi:10.4161/cc.7.20.6882
[96] Sparks, J.D. and Sparks, C.E. (2008) Overindulgence and metabolic syndrome: Is FoxO1 a missing link? The Journal of Clinical Investigation, 118, 2012-2015.
[97] Zhao, Y.F., Feng, D.D. and Chen, C. (2006) Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. The International Journal of Biochemistry & Cell Biology, 38, 804-819. doi:10.1016/j.biocel.2005.11.008
[98] Antuna-Puente, B., et al. (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes & Metabolism, 34, 2-11. doi:10.1016/j.diabet.2007.09.004
[99] Kralisch, S., et al. (2007) Adipokines in diabetes and cardiovascular diseases. Minerva Endocrinologica, 32, 161-171.
[100] Arner, P. (2005) Insulin resistance in type 2 diabetes—role of the adipokines. Current Molecular Medicine, 5, 333-339. doi:10.2174/1566524053766022
[101] Considine, R.V., et al. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. The New England Journal of Medicine, 334, 292-295. doi:10.1056/NEJM199602013340503
[102] Minokoshi, Y., et al. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 415, 339-343. doi:10.1038/415339a
[103] Greenfield, J.R. and Campbell, L.V. (2006) Relationship between inflammation, insulin resistance and type 2 diabetes: “Cause or effect”? Current Diabetes Reviews, 2, 195-211. doi:10.2174/157339906776818532
[104] Hotamisligil, G.S. and Spiegelman, B.M. (1994) Tumor necrosis factor alpha: A key component of the obesity-diabetes link. Diabetes, 43, 1271-1278. doi:10.2337/diabetes.43.11.1271
[105] Kim, J.H., Bachmann, R.A. and Chen, J. (2009) Interleukin-6 and insulin resistance. Vitam Horm, 80, 613-633. doi:10.1016/S0083-6729(08)00621-3
[106] Nieto-Vazquez, I., et al. (2008) Insulin resistance associated to obesity: The link TNF-alpha. Archives of Physiology and Biochemistry, 114, 183-194. doi:10.1080/13813450802181047
[107] Lorenzo, M., et al. (2008) Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. Journal of Animal Science, 86, E94-E104. doi:10.2527/jas.2007-0462
[108] Feinstein, R., et al. (1993) Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. The Journal of Biological Chemistry, 268, 26055-26058.
[109] Hartge, M.M., Unger, T. and Kintscher, U. (2007) The endothelium and vascular inflammation in diabetes. Diabetes and Vascular Disease Research, 4, 84-88. doi:10.3132/dvdr.2007.025
[110] Hsueh, W.A. and Quinones, M.J. (2003) Role of endothelial dysfunction in insulin resistance. American Journal of Cardiology, 92, 10J-17J. doi:10.1016/S0002-9149(03)00611-8
[111] Yamauchi, T., et al. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 8, 1288-1295. doi:10.1038/nm788
[112] Kadowaki, T. and Yamauchi, T. (2005) Adiponectin and adiponectin receptors. Endocrine Reviews, 26, 439-451. doi:10.1210/er.2005-0005
[113] Schondorf, T., et al. (2005) Biological background and role of adiponectin as marker for insulin resistance and cardiovascular risk. Clinical Laboratory, 51, 489-494.
[114] Utsunomiya, H., et al. (2005) Anti-hyperglycemic effects of plum in a rat model of obesity and type 2 diabetes, Wistar fatty rat. Biomedical Research, 26, 193-200. doi:10.2220/biomedres.26.193
[115] Yaturu, S., Bridges, J.F. and Subba Reddy, D.R. (2006) Decreased levels of plasma adiponectin in prediabetes, Type 2 diabetes and coronary artery disease. Medical Science Monitor, 12, CR17-CR20.
[116] Adeghate, E. (2008) Visfatin: Structure, function and relation to diabetes mellitus and other dysfunctions. Current Medicinal Chemistry, 15, 1851-1862. doi:10.2174/092986708785133004
[117] Esteghamati, A., et al. (2011) Serum visfatin is associated with type 2 diabetes mellitus independent of insulin resistance and obesity. Diabetes Research and Clinical Practice, 91, 154-158.
[118] Davutoglu, M., et al. (2009) Plasma visfatin concentrations in childhood obesity: Relationships with insulin resistance and anthropometric indices. Swiss Medical Weekly, 139, 22-27.
[119] Pagano, C., et al. (2006) Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. The Journal of Clinical Endocrinology & Metabolism, 91, 3165-3170. doi:10.1210/jc.2006-0361
[120] Guo, H., et al. (2010) Lipocalin-2 deficiency impairs thermo-genesis and potentiates diet-induced insulin resistance in mice. Diabetes, 59, 1376-1385. doi:10.2337/db09-1735
[121] Catalan, V., et al. (2009) Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. Journal of Molecular Medicine, 87, 803-813. doi:10.1007/s00109-009-0486-8
[122] Musso, G., et al. (2011) Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Annals of Medicine, 43, 617-649.
[123] Adams, L.A., et al. (2009) NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. The American Journal of Gastroenterology, 104, 861-867. doi:10.1038/ajg.2009.67
[124] Bugianesi, E., et al. (2010) Insulin resistance in nonalcoholic fatty liver disease. Current Pharmaceutical Design, 16, 1941-1951. doi:10.2174/138161210791208875
[125] Fan, J.G. (2008) Impact of non-alcoholic fatty liver disease on accelerated metabolic complications. Journal of Digestive Diseases, 9, 63-67. doi:10.1111/j.1751-2980.2008.00323.x
[126] Guidelines Committee (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—The evidence report. National Institutes of Health. Obesity Research, 6, 51S-209S.
[127] Fujioka, K. (2010) Benefits of moderate weight loss in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 12, 186-194. doi:10.1111/j.1463-1326.2009.01155.x
[128] Riccardi, G., Capaldo, B. and Vaccaro, O. (2005) Functional foods in the management of obesity and type 2 diabetes. Current Opinion in Clinical Nutrition & Metabolic Care, 8, 630-635. doi:10.1097/01.mco.0000171126.98783.0c
[129] Utzschneider, K.M., et al. (2004) Diet-induced weight loss is associated with an improvement in beta-cell function in older men. The Journal of Clinical Endocrinology & Metabolism, 89, 2704-2710. doi:10.1210/jc.2003-031827
[130] Boden, G., et al. (2005) Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Annals of Internal Medicine, 142, 403-411.
[131] Stern, L., et al. (2004) The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: One-year follow-up of a randomized trial. Annals of Internal Medicine, 140, 778-785.
[132] Tuomilehto, J., et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The New England Journal of Medicine, 344, 1343-1350. doi:10.1056/NEJM200105033441801
[133] Knowler, W.C., et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine, 346, 393-403. doi:10.1056/NEJMoa012512
[134] Knowler, W.C., et al. (2009) 10-Year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet, 374, 1677-1686. doi:10.1016/S0140-6736(09)61457-4
[135] Ratner, R.E., et al. (2008) Prevention of diabetes in women with a history of gestational diabetes: Effects of metformin and lifestyle interventions. The Journal of Clinical Endocrinology & Metabolism, 93, 4774-4779. doi:10.1210/jc.2008-0772
[136] Pan, X.R., et al. (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20, 537-544. doi:10.2337/diacare.20.4.537
[137] Torgerson, J.S., et al. (2004) XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care, 27, 155-161. doi:10.2337/diacare.27.1.155
[138] Ryan, D.H., et al. (2003) Look AHEAD (Action for Health in Diabetes): Design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Controlled Clinical Trials, 24, 610-628. doi:10.1016/S0197-2456(03)00064-3
[139] Wing, R.R. (2010) Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: Four-year results of the Look AHEAD trial. Archives of Internal Medicine, 170, 1566-1575.
[140] Sakane, N., et al. (2011) Prevention of type 2 diabetes in a primary healthcare setting: Three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health, 11, 40.
[141] Sjostrom, L., et al. (1998) Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet, 352, 167-172. doi:10.1016/S0140-6736(97)11509-4
[142] Shi, Y.F., et al. (2005) Orlistat in the treatment of overweight or obese Chinese patients with newly diagnosed Type 2 diabetes. Diabetic Medicine, 22, 1737-1743. doi:10.1111/j.1464-5491.2005.01723.x
[143] Rowe, R., et al. (2005) The effects of orlistat in patients with diabetes: Improvement in glycaemic control and weight loss. Current Medical Research and Opinion, 21, 1885-1890. doi:10.1185/030079905X74943
[144] Tan, K.C., et al. (2002) Acute effect of orlistat on post-prandial lipaemia and free fatty acids in overweight patients with Type 2 diabetes mellitus. Diabetic Medicine, 19, 944-948. doi:10.1046/j.1464-5491.2002.00823.x
[145] Hollander, P.A., et al. (1998) Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care, 21, 1288-1294. doi:10.2337/diacare.21.8.1288
[146] Damci, T., et al. (2004) Orlistat augments postprandial increases in glucagon-like peptide 1 in obese type 2 diabetic patients. Diabetes Care, 27, 1077-1080. doi:10.2337/diacare.27.5.1077
[147] Van Gaal, L.F., et al. (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-Year experience from the RIO-Europe study. Lancet, 365, 1389-1397. doi:10.1016/S0140-6736(05)66374-X
[148] Yanovski, S.Z. (2005) Pharmacotherapy for obesity― promise and uncertainty. The New England Journal of Medicine, 353, 2187-2189. doi:10.1056/NEJMe058243
[149] Despres, J.P., Golay, A. and Sjostrom, L. (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. The New England Journal of Medicine, 353, 2121-2134. doi:10.1056/NEJMoa044537
[150] McNeely, W. and Goa, K.L. (1998) Sibutramine. A review of its contribution to the management of obesity. Drugs, 56, 1093-1124. doi:10.2165/00003495-199856060-00019
[151] Gokcel, A., et al. (2001) Effects of sibutramine in obese female subjects with type 2 diabetes and poor blood glucose control. Diabetes Care, 24, 1957-1960. doi:10.2337/diacare.24.11.1957
[152] Norris, S.L., et al. (2004) Efficacy of pharmacotherapy for weight loss in adults with type 2 diabetes mellitus: A meta-analysis. Archives of Internal Medicine, 164, 1395-1404. doi:10.1001/archinte.164.13.1395
[153] National Institutes of Health (1987) Consensus development conference on diet and exercise in non-insulin-dependent diabetes mellitus. Diabetes Care, 10, 639-644.
[154] Hughes, T.A., et al. (1984) Effects of caloric restriction and weight loss on glycemic control, insulin release and resistance, and atherosclerotic risk in obese patients with type II diabetes mellitus. American Journal of Medicine, 77, 7-17. doi:10.1016/0002-9343(84)90429-7
[155] Redmon, J.B., et al. (2005) Two-year outcome of a combination of weight loss therapies for type 2 diabetes. Diabetes Care, 28, 1311-1315. doi:10.2337/diacare.28.6.1311
[156] Henry, R.R., et al. (1986) Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes, 35, 155-164. doi:10.2337/diabetes.35.2.155
[157] Lee, A. and Morley, J.E. (1998) Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obesity Research, 6, 47-53.
[158] Genuth, S. (2000) Implications of the United Kingdom prospective diabetes study for patients with obesity and type 2 diabetes. Obesity Research, 8, 198-201. doi:10.1038/oby.2000.22
[159] Greenway, F. (1999) Obesity medications and the treatment of type 2 diabetes. Diabetes Technology & Therapeutics, 1, 277-287. doi:10.1089/152091599317198
[160] Poon, T., et al. (2005) Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: A dose-ranging study. Diabetes Technology & Therapeutics, 7, 467-477. doi:10.1089/dia.2005.7.467
[161] Pories, W.J., et al. (1992) Is type II diabetes mellitus (NIDDM) a surgical disease? Annals of Surgery, 215, 633-643. doi:10.1097/00000658-199206000-00010
[162] O’Leary, J.P. (1980) Overview: Jejunoileal bypass in the treatment of morbid obesity. The American Journal of Clinical Nutrition, 33, 389-394.
[163] Sjostrom, L., et al. (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. The New England Journal of Medicine, 351, 2683-2693. doi:10.1056/NEJMoa035622
[164] Aucott, L., et al. (2004) Weight loss in obese diabetic and non-diabetic individuals and long-term diabetes outcomes—a systematic review. Diabetes, Obesity and Metabolism, 6, 85-94. doi:10.1111/j.1462-8902.2004.00315.x
[165] Franks, P.W., et al. (2008) Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia, 51, 458-463. doi:10.1007/s00125-007-0887-6
[166] Gudmundsson, J., et al. (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nature Genetics, 39, 977-983. doi:10.1038/ng2062
[167] Sandhu, M.S., et al. (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nature Genetics, 39, 951-953. doi:10.1038/ng2067
[168] Winckler, W., et al. (2007) Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes, 56, 685-693. doi:10.2337/db06-0202
[169] Bouatia-Naji, N., et al. (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nature Genetics, 41, 89-94. doi:10.1038/ng.277
[170] Lyssenko, V., et al. (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nature Genetics, 41, 82-88. doi:10.1038/ng.288
[171] Prokopenko, I., et al. (2009) Variants in MTNR1B influence fasting glucose levels. Nature Genetics, 41, 77-81. doi:10.1038/ng.290
[172] Rung, J., et al. (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nature Genetics, 41, 1110-1115. doi:10.1038/ng.443
[173] O’Rahilly, S. (2009) Human genetics illuminates the paths to metabolic disease. Nature, 462, 307-314. doi:10.1038/nature08532
[174] Jafar-Mohammadi, B. and McCarthy, M.I. (2008) Genetics of type 2 diabetes mellitus and obesity—A review. Annals of Medicine, 40, 2-10. doi:10.1080/07853890701670421
[175] Scuteri, A., et al. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genetics, 3, e115. doi:10.1371/journal.pgen.0030115
[176] Dina, C., et al. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genetics, 39, 724-726. doi:10.1038/ng2048
[177] Frayling, T.M., et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889-894. doi:10.1126/science.1141634
[178] Speliotes, E.K., et al. (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42, 937-948. doi:10.1038/ng.686
[179] Willer, C.J., et al. (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics, 41, 25-34. doi:10.1038/ng.287
[180] Thorleifsson, G., et al. (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics, 41, 18-24. doi:10.1038/ng.274
[181] Loos, R.J., et al. (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genetics, 40, 768-775. doi:10.1038/ng.140
[182] Tong, Y., et al. (2009) Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: A large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Medical Genetics, 10, 15. doi:10.1186/1471-2350-10-15
[183] Pearson, E.R., et al. (2007) Variation in TCF7L2 influences therapeutic response to sulfonylureas: A GoDARTs study. Diabetes, 56, 2178-2182. doi:10.2337/db07-0440
[184] Lindgren, C.M. and McCarthy, M.I. (2008) Mechanisms of disease: Genetic insights into the etiology of type 2 diabetes and obesity. Nature Clinical Practice Endocrinology & Metabolism, 4, 156-163. doi:10.1038/ncpendmet0723
[185] Lillioja, S., et al. (1987) Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. The Journal of Clinical Investigation, 80, 415-424. doi:10.1172/JCI113088
[186] Johansson, A., et al. Linkage and genome-wide association analysis of obesity-related phenotypes: Association of weight with the MGAT1 gene. Obesity (Silver Spring), 18, 803-808.
[187] Buchwald, H., et al. (2007) Trends in mortality in bariatric surgery: A systematic review and meta-analysis. Surgery, 142, 621-632. doi:10.1016/j.surg.2007.07.018
[188] Cunneen, S.A. (2008) Review of meta-analytic comparisons of bariatric surgery with a focus on laparoscopic adjustable gastric banding. Surgery for Obesity and Related Diseases, 4, S47-S55. doi:10.1016/j.soard.2008.04.007
[189] Buchwald, H., et al. (2004) Bariatric surgery: A systematic review and meta-analysis. Journal of the American Medical Association, 292, 1724-1737. doi:10.1001/jama.292.14.1724
[190] Buchwald, H., et al. (2009) Weight and type 2 diabetes after bariatric surgery: Systematic review and meta-analysis. American Journal of Medicine, 122, 248-256 e5.
[191] Levy, P., et al. (2007) The comparative effects of bariatric surgery on weight and type 2 diabetes. Obesity Surgery, 17, 1248-1256. doi:10.1007/s11695-007-9214-z
[192] Laferrere, B., et al. (2007) Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care, 30, 1709-1716. doi:10.2337/dc06-1549
[193] Kendall, D.M., et al. (2005) Effects of exenatide (ex- endin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care, 28, 1083-1091. doi:10.2337/diacare.28.5.1083
[194] Buse, J.B., et al. (2004) Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea- treated patients with type 2 diabetes. Diabetes Care, 27, 2628-2635. doi:10.2337/diacare.27.11.2628
[195] Buse, J.B., et al. (2007) Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes: An interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials. Clinical Therapeutics, 29, 139-153. doi:10.1016/j.clinthera.2007.01.015
[196] Shyangdan, D.S., et al. (2010) Glucagon-like peptide analogues for type 2 diabetes mellitus: Systematic review and meta-analysis. BMC Endocrine Disorders, 10, 20. doi:10.1186/1472-6823-10-20
[197] Smith Jr., S.C. (2007) Multiple risk factors for cardiovascular disease and diabetes mellitus. American Journal of Medicine, 120, S3-S11. doi:10.1016/j.amjmed.2007.01.002
[198] Bray, G.A. and Bellanger, T. (2006) Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine, 29, 109-117. doi:10.1385/ENDO:29:1:109
[199] Laakso, M. (2010) Cardiovascular disease in type 2 diabetes from population to man to mechanisms: The Kelly West Award Lecture 2008. Diabetes Care, 33, 442-449.
[200] Haffner, S.M., et al. (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England Journal of Medicine, 339, 229-234. doi:10.1056/NEJM199807233390404
[201] James I. and Cleeman, M.D. (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Journal of the American Medical Association, 285, 2486-2497. doi:10.1001/jama.285.19.2486
[202] Juutilainen, A., et al. (2005) Type 2 diabetes as a “coronary heart disease equivalent”: An 18-year prospective population-based study in Finnish subjects. Diabetes Care, 28, 2901-2907. doi:10.2337/diacare.28.12.2901
[203] Manson, J.E., et al. (1990) A prospective study of obesity and risk of coronary heart disease in women. The New England Journal of Medicine, 322, 882-889. doi:10.1056/NEJM199003293221303
[204] Manson, J.E., et al. (1995) Body weight and mortality among women. The New England Journal of Medicine, 333, 677-685. doi:10.1056/NEJM199509143331101
[205] Catalan, V., et al. (2007) Proinflammatory cytokines in obesity: Impact of type 2 diabetes mellitus and gastric bypass. Obesity Surgery, 17, 1464-1474. doi:10.1007/s11695-008-9424-z
[206] WHO (1995) Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organization Technical Report Series, 854, 1-452.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.