Share This Article:

DNA Finger Printing of Prosopis cineraria and Prosopis juliflora Using ISSR and RAPD Techniques

Abstract Full-Text HTML Download Download as PDF (Size:154KB) PP. 527-534
DOI: 10.4236/ajps.2011.24062    5,882 Downloads   11,692 Views   Citations

ABSTRACT

Diversity within and among the populations of Prosopis cineraria and Prosopis juliflora collected from different loca-tion of Qatar were explored using Inter Simple Sequence Repeat (ISSR) and Random Amplified Polymorphic DNA (RAPD) markers. A total of one hundred and nine bands were generated from twenty nine ISSR and nineteen bands from seven RAPD primers with an average polymorphism of more than ninety nine percent across all the genotypes. ISSR techniques were capable of distinguishing between P. cineraria and P. juliflora, through twenty one bands. How-ever, of the seven RAPD markers, only three bands were able to distinguish between Prosopis species. The dendro-grams for the analysis of genetic similarity show that the individuals from both species can be separated in two highly related groups. Our observations suggest that genetic variations among different accessions of Prosopis are identified using ISSR and RAPD analysis.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Elmeer and A. Almalki, "DNA Finger Printing of Prosopis cineraria and Prosopis juliflora Using ISSR and RAPD Techniques," American Journal of Plant Sciences, Vol. 2 No. 4, 2011, pp. 527-534. doi: 10.4236/ajps.2011.24062.

References

[1] R. B. Leakey and F. T. Last, “Biology and Potential of Prosopis Species in Arid Environment with Particular Reference to P. cineraria,” Journal of Arid Environments, Vol. 3, 1980, pp. 9-24.
[2] S. K. Sharma, D. Rawat, S. Kumar, A. Kumar, S. Kumaria and S. R. Rao, “Single Primer Amplification Reaction (SPAR) Reveals Intra-Specific Natural Variation in Prosopis cineraria (L.) Druce,” Trees-Structure and Function, Vol. 24, 2010, pp. 855-864.
[3] A. Burkart, “A Monograph of the Genus Prosopis (Leguminosae subfam. Mimosoideae),” Journal of the Arnold Arboretum, Vol. 57, No. 219-249, 1976, pp. 450-525.
[4] A. Schinini, “Contribucion a la Flora del Paraguay,” Bonplandia, Vol. 5, 1981, pp. 101-108.
[5] A. L. Lamarque, D. M. Maestri, N. R. Grosso, J. A. Zygadlo and C. A. Guzman, “Proximate Composition and Seed Lipid Components of Some Prosopis (Leguminosae) from Argentina,” Journal of the Science of Food and Agriculture, Vol. 66, No. 3, 1994, pp. 323-326. doi:10.1002/jsfa.2740660309
[6] S. Arya, R. P. Bisht, R. Tomar, O. P. Toky and P. J. C. Harris, “Genetic Variation in Minerals, Crude Protein and Structural Carbohydrates of Foliage in Provenances of Young Plants of Prosopis cineraria (L.) Druce in India,” Agroforestry Systems, Vol. 29, No. 1, 1995, pp. 1-7. doi:10.1007/BF00711277
[7] N. B. Hamza, “Genetic Variation within and among Three Invasive Prosopis juliflora (Leguminosae) Populations in the River Nile State, Sudan,” International Journal of Genetics and Molecular Biology, Vol. 2, 2010, pp. 92-100.
[8] O. T. Solbrig and K. S. Bawa, “Isozyme Variation in Species of Prosopis (Leguminosae),” Journal of the Arnold Arboretum, Vol. 56, 1975, pp. 398-412.
[9] L. Ramírez, A. De La Vega, N. Razkin, V. Luna and P. J. C. Harris, “Analysis of the Relationships between Species of the Genus Prosopis Revealed by the Use of Molecular Markers,” Agronomie, Vol. 19, No. 1, 1999, pp. 31-43. doi:10.1051/agro:19990104
[10] D. Rawat, A. Kumar and S. R. Rao, “Studies on Cytogenetical Variation in Prosopis cineraria (Linn.) Druceda Key Stone Tree Species of Indian Desert,” Silvae Genetica, Vol. 56, 2007, pp. 184-189.
[11] M. P. Reddy, N. Sarla and E. A. Siddiq, “Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Plant Breeding,” Euphytica, Vol. 128, No. 1, 2002, pp. 9-17. doi:10.1023/A:1020691618797
[12] Horoshi Hamada, Petrino, G. Marianne and Takeo Kakunaga, “A Novel Repeated Element with ZDNA-Forming Potential Is Widely Found in Evolutionarily Diverse Eukaryotic Genomes,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 79, No. 21, 1982, pp. 6465-6469. doi:10.1073/pnas.79.21.6465
[13] B. Liu and J. F. Wendel, “Intersimple Sequence Repeat (ISSR) Polymorphisms as a Genetic Marker System in Cotton,” Molecular Ecology Notes, Vol. 3, 2001, pp. 205-208.
[14] G. Arnau, J. Lallemand and M. Bourgoin, “Fast and Reliable Strawberry Cultivar Identification Using Inter Simple Sequence Repeat (ISSR) Amplification,” Euphytica, Vol. 129, No. 1, 2003, pp. 69-79. doi:10.1023/A:1021509206584
[15] M. Z. Galvan, B. Bornet, P. A. Balatti and M. Branchard, “Inter Simple Sequence Repeat (ISSR) Markers as a Tool for the Assessment of Both Genetic Diversity and Gene Pool Origin in Common Bean (Phaseolus vulgaris L.),” Euphytica, Vol. 132, No. 3, 2003, pp. 297-301. doi:10.1023/A:1025032622411
[16] K. Vijayan and S. N. Chatterjee, “ISSR Profiling of Indian Cultivars of Mulberry (Morus spp.) and Its Relevance to Breeding Programs,” Euphytica,. Vol. 131, No. 1,. 2003, pp. 53-63. doi:10.1023/A:1023098908110
[17] J. G. K. Williams, A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey, “DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers,” Nucleic Acids Research, Vol. 18, No. 22, 1990, pp. 6531-6535. doi:10.1093/nar/18.22.6531
[18] M. A. Rabbani, A. Iwabuchi, Y. Murakami, T. Suzuki and K. Takayanagi, “Genetic Diversity in Mustard (Brassica juncea L.) Germplasm from Pakistan as Determined by RAPDs,” Euphytica, Vol. 103, No. 2, 1998, pp. 235-242. doi:10.1023/A:1018304921526
[19] J. Juárez, G. Carrillo-Casta?eda, R. Arreguín and A. Rubluo, “Inter and Intragenetic Variation of Four Wild Populations of Prosopis Using RAPD-PCR Fingerprints,” Biodiversity and Conservation, Vol. 11, No. 5, 2002, pp. 921-930. doi:10.1023/A:1015375803204
[20] C. Degani, L. J. Rowland, A. Levi, J. A. Hortynski and G. J. Galletta, “DNA Fingerprinting of Strawberry (Fragaria x ananassa) Cultivars Using Randomly Amplified Polymorphic DNA (RAPD) Markers,” Euphytica, Vol. 102, No. 2, 1998, pp. 247-253. doi:10.1023/A:1018385715007
[21] P. V. Reddy and K. M. Soliman, “Identification of Wild and Cultivated Hordeum Species Using Tow-Primer RAPD Fragments,” Biologia Plantarum, Vol. 39, No. 4, 1997, pp. 543-552. doi:10.1023/A:1000922613713
[22] D. Kaemmer, R. Afza, K. Weising, G. Kahl and F. J. Novak, “Oligonucleotide and Amplification Fingerprinting of Wild Species and Cultivars of Banana (Musa sp.),” Nature Biotechnology, Vol. 10, 1992, pp. 1030-1035. doi:10.1038/nbt0992-1030
[23] P. Winter and G. Kahl, “Molecular Marker Technologies for Plant Improvement,” World Journal of Microbiology and Biotechnology, Vol. 11, No. 4, 1995, pp. 438-448. doi:10.1007/BF00364619
[24] K. Zhang, K. M. Soliman and V. T. Sapra, “Polymerase Chain Reaction Detect Polymorphisms and Trait Association in Soybean,” Biologia Plantarum, Vol. 40, No. 1, 1997, pp. 43-53. doi:10.1023/A:1000940400276
[25] B. Renau-Morata, S. G. Nebaurer, E. Sales, J. Allainguillaume, P. Caligari and J. Segura, “Genetic Diversity and Structure of Natural and Managed Populations of Cedrus atlantica (Pinaceae) Assessed Using Random Amplified Polymorphic DNA,” American Journal of Botany, Vol. 92, No. 5, 2005, pp. 875-884. doi:10.3732/ajb.92.5.875
[26] G. E. Kandedmir, I. Kandedmir and Z. Kaya, “Genetic Variation in Turkish Red Pine (Pinus brutia Ten.) Seed Stands as Determined by RAPD Markers,” Silvae Genetica, Vol. 53, No. 4, 2004, pp. 169-175.
[27] Z. Y. Zhang, Y. Y. Chen and Dz. Li, “Detection of Low Genetic Variation in a Critically Endangered Chinese Pine, Pinus squamata, Using RAPD and ISSR Markers,” Biochemical Genetics, Vol. 43, No. 5-6, 2005, pp. 239-249. doi:10.1007/s10528-005-5215-6
[28] B. O. Saidman, C. Bessega, L. I. Ferreyra and J. C. Vilardi, “Random Amplified Polymorphic DNA (RAPDs) Variation in Hybrid Swarms and Pure Populations of Genus Prosopis (Leguminosae). International Foundation for Schinini A. Contribucion a laˉora del Paraguay,” Bonplandia, Vol. 5, 1998, pp. 101-108.
[29] L. I. Ferreyra, C. Bessega, J. C. Vilardi, B. O. Saidman, “First Report on RAPDs Patterns Able to Differentiate Some Argentineae Species of Section Algarobia (Prosopis, Leguminosae),” Genetica, Vol. 121, No. 1, 2004, pp. 33-42. doi:10.1023/B:GENE.0000019925.06080.c7
[30] G. Landeras, M. Alfonso, N. M. Pasiecznik, P. J. C. Harris and L. Ramírez, “Identification of Prosopis juliflora and Prosopis pallid Accesions Using Molecular Markers,” Biodiversity and Conservation, Vol. 15, No. 5, 2006, pp. 1829-1844. doi:10.1007/s10531-004-6682-5
[31] B. Corniquel and L. Mercier, “Date Palm (Phoenix dactylifera L.) Cultivar Identification by RFLP and RAPD,” Plant Science, Vol. 101, No. 2, 1994, pp. 163-172. doi:10.1016/0168-9452(94)90252-6
[32] J. I. Stiles, C. Lemme, S. Sondur, M. B. Morshidi and R. Manshardt, “Using Randomly Amplified Polymorphic DNA for Evaluating Genetic Relationships among Papaya Cultivars,” Theoretical and Applied Genetics, Vol. 85, No. 6-7, 1993, pp. 697-701. doi:10.1007/BF00225007
[33] H. D. Bradshaw, M. Villar, B. D. Watson, K. G. Otto, S. Stewart and R. F. Stettler, “Molecular Genetics of Growth and Development in Populus. III. A Genetic Linkage Map of a Hybrid Poplar Composed of RFLP, STS and RAPD Markers,” Theoretical and Applied Genetics, Vol. 89, 1994, pp. 167-178. doi:10.1007/BF00225137
[34] S. A. Ranade, A. Kumar, M. Goswami, N. Farooqui and P. V. Sane, “Genome Analysis of Amaranths: Determination of Inter- and Intra-Species Variations,” Journal of Biosciences, Vol. 22, No. 4, 1997, pp. 457-464. doi:10.1007/BF02703191
[35] M. Goswami and S. A. Ranade, “Analysis of Variations in RAPD Profiles among Accessions of Prosopis,” Journal of Genetics, Vol. 78, 1999, pp. 141-147. doi:10.1007/BF02934459
[36] K. Liu and S. V. Muse, “PowerMarker: An Integrated Analysis Environment for Genetic Marker Analysis,” Bioinformatics, Vol. 21, No. 9, 2005, pp. 2128-2129. doi:10.1093/bioinformatics/bti282
[37] Z. Hammer, D. A. T. Harper and P. D. Ryan, “Past: Paleontological Statistics Software Package for Education and Data Analysis,” Palaeontologia Electronica, Vol. 4, No. 1, 2001, p. 9.
[38] H. El-Rabey, “Molecular and Biochemical Studies on Egyptian Hordium murinum L. Complex as Reveald by RAPD-PCR and Seed Storage Protein Electrophoresis. Taeckholmia, Vol. 28, 2008, pp. 145-156.
[39] M. Bnmoussa and A. Achouch, “Effect of Water Stress on Yield and Its Components of Some Cereals in Algeria,” Journal of Central European Agriculture, Vol. 6, No. 4, 2005, pp. 427-434.
[40] S. A. Catalano, J. C. Vilardi, D. Tosto and B. O. Saidman, “Molecular Phylogeny and Diversification History of Prosopis (Fabaceae: Mimosoideae),” Biological Journal of the Linnean Society, Vol. 93, 2008, pp. 621-640.
[41] J. E. Richardson, F. M. Welz, M. F. Fay, Q. C. B. Cronk, H. P. Linder, G. Reeves and M. W. Chase, “Rapid and Recent Origin of Species Riches in the Cape Flora of South Africa,” Nature, Vol. 412, 2001, pp. 181-183. doi:10.1038/35084067
[42] C. Klak, G. Reeves and T. Hedderson, “Unmatched Tempo of Evolution in Southern African Semi-Desert Ice Plants,” Nature, Vol. 427, 2003, pp. 63-65. doi:10.1038/nature02243
[43] M. J. Moore and R. K. Jansen, “Molecular Evidence for the Age, Origin, and Evolutionary History of the American Desert Plant Genus Tiquilia (Boraginaceae),” Molecular Phylogenetics and Evolution, Vol. 39, No. 3, 2006, pp. 668-687. doi:10.1016/j.ympev.2006.01.020
[44] S. V. Good-Avila, V. Souza, B. S. Gaut and L. E. Eguiarte, “Timing and Rate of Speciation in Agave (Agavaceae),” Proceedings of the National Academy of Sciences of the United States, Vol. 103, No. 24, 2006, pp. 9124-9129. doi:10.1073/pnas.0603312103
[45] A. L. Wang, M. H. Yang and J. Q. Liu, “Molecular Phylogeny, Recent Radiation and Evolution of Gross Morphology of the Rhubarb Genus Rheum (Polygonaceae) Inferred from Chloroplast DNA trnL-F Sequences,” Annals of Botany, Vol. 96, No. 3, 2005, pp. 489-498. doi:10.1093/aob/mci201
[46] O. Savolainen, T. Pyhajarvi and T. Knurr, “Gene Flow and Local Adaptation in Trees,” Annual Review of Ecology, Evolution, and Systematics, Vol. 38, 2007, pp. 595-619. doi:10.1146/annurev.ecolsys.38.091206.095646
[47] S. I. Wright and B. S. Gaut, “Molecular Population Genetics and the Search for Adaptive Evolution in Plants,” Molecular Biology and Evolution, Vol. 22, No. 3, 2005, pp. 506-519. doi:10.1093/molbev/msi035
[48] B. Charlesworth, M. Nordborg and D. Charlesworth, “The Effects of Local Selection, Balanced Polymorphism, and Background Selection on Equilibrium Patterns of Genetic Diversity in Subdivided Populations,” Genetic Research, Vol. 70, 1997, pp. 155-174. doi:10.1017/S0016672397002954
[49] S. R. Ajibade, N. F. Weeden and S. Michite, “Inter Simple Sequence Repeat Analysis of Genetic Relationships in the Genus Vigna,” Euphytica, Vol. 111, No. 1, 2000, pp. 47-55. doi:10.1023/A:1003763328768
[50] T. Nagaoka and Y. Ogihara, “Applicability of Inter Simple Sequence Repeat Polymorphisms in Wheat for Use as DNA Markers in Comparison to RFLP and RAPD Markers,” Theoretical and Applied Genetics, Vol. 94, No. 5, 1997, pp. 597-602. doi:10.1007/s001220050456

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.