Anticushing Drug Metyrapone Exhibits Specific Interactions with Serine Containing Systems. A Possible Molecular Target?

Abstract

Metyrapone (2-methyl-1,2-di-3-pyridyl-1-propanone) is a drug largely used as inhibitor of glucocorticoid synthesis. Although its binding to various proteins has been well indentified, its accurate molecular mechanism of action remains unknown. Therefore, the interactions of metyrapone (MET) with various membrane components such as phospholipids, cholesterol, their corresponding polar heads and a model serine containing peptide have been investigated by NMR and ESR methods. It was found that neither cholesterol nor most of the phospholipids tested, nor dimyristin exhibit any interaction with MET, except phosphatidylserine (DMPS). Furthermore, only serine bearing polar head (O-phosphoserine) showed an association with MET (stoechiometry 1:1, Kd = 3200M-1). As similar observations were also performed on serine alone and in the presence of the serine containing model peptide, (NASDSDGQDL), a possible implication of these interactions in the binding recognition of MET on serine-containing active site was finally tested and discussed.

Share and Cite:

D. Crouzier, J. Debouzy, F. Nachon, D. Debouzy, G. Lallement and F. Canini, "Anticushing Drug Metyrapone Exhibits Specific Interactions with Serine Containing Systems. A Possible Molecular Target?," Pharmacology & Pharmacy, Vol. 2 No. 4, 2011, pp. 322-331. doi: 10.4236/pp.2011.24041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. S. Jenkins, J. W. Meakin, D. H. Nelson and G. W. Thorn, “Inhibition of adrenal steroid 11-oxygenation in the dog,” Science, Vol. 128, 1958, pp. 478-479.
[2] J. A. Verhelst, P. J. Trainer, T. A. Howlett, L. Perry, L. H. Rees, A. B. Grossman, J. A. H. Wass and G. M. Besser, “Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome,” Clinical Endocrinology, Vol. 35, 1991, pp. 169- 178.
[3] N. Sonino, M. Boscaro, G. Ambrose, G. Merola and F. Mantero, “Prolonged treatment of Cushing’s dlsease with metyrapone and aminoglutethimide,” IRCS Medical Sciences, Vol. 14, 1986, pp. 485-486.
[4] R. Yehuda, “Post-traumatic stress disorder,” The New England Journal of Medicine, Vol. 346, No. 2, 2002, pp. 108-114.
[5] P. C. Myhill, S. Starkstein, T. Annus and B. B. Yeap, “Reduction in salivary cortisol concentration correlates with resolution of psychosis in Cushing’s syndrome,” Journal of Neuropsychiatry and Clinical Neuroscience, Vol. 20, 2008, pp. 113-115.
[6] B. E. P. Murphy, V. Dhar, A. M. Ghadirian, G. Chouinard and R. Keller, “Response to steroid suppression in major depression resistant to antidepressant therapy,” Journal of clinical Psychopharmacology, Vol. 11, No., 1991, pp. 121-126.
[7] Z. Rogoz, G. Skuza, J. Wójcikowski, W. A. Daniel, A. Wróbel, D. Dudek and A. Zieba, “Effect of metyrapone supplementation on imipramine therapy in patients with treatment resistant unipolar depression,” Polish Journal of Pharmacology, Vol. 56, 2004, pp. 849-255.
[8] O. M. Wolkowitz and V. I. Reus, “Treatment of depression with antiglucocorticoid drugs,” Psychosomatic Medicine, Vol. 61, 1999, pp. 698-711.
[9] B. E. P. Murphy, “Steroid and depression,” Journal of Steroid Biochemistry and Molecular Biology, Vol. 38, No. 5, 1991, pp. 537-559.
[10] R. Werner, “Effect of metopirone-ditartrate on thermogenesis in the guinea-pig,” Comparatory Biochemistry and Physiology, Vol. 90C, No. 2, 1988, pp. 445-450.
[11] J.-B. Drouet, V. Michel, A. Peinnequin, A. Alonso, N. Fidier, R. Maury, A. Buguet, R. Cespuglio and F. Canini, “Metyrapone blunts stress-induced hyperthermia and increased locomotor activity independently of glucocorticoids and neurosteroids,” Psychoneuroendocrinology, Vol. 35, No. 9, 2010, pp. 1299-1310.
[12] F. Canini, S. Brahimia, J.-B. Drouet, V. Michel, A. Alonso, A. Buguet and R. Cespuglio, “Metyrapone decreases locomotion acutely,” Neuroscience Letters, Vol. 457, 2009, pp. 41-44.
[13] J.-B. Drouet, C. Rousset, R. Maury, V. Michel, A. Buguet, R. Cespuglio and F. Canini, “Single administration of metyrapone modifies sleep-wake patterns in the rat,” European Journal of Pharmacology, Vol. 652 No. 1-3, 2010, pp. 60-64.
[14] D. Rottlant, S. Ons, J. Carrasco and A. Armario, “Evidence that metyrapone can act as a stressor: effect on pituitary-adrenal hormones, plasma glucose and brain c-fos induction,” European Journal of Neuroscience, Vol. 16, 2002, pp. 693-700.
[15] M. Baez, I. Siriczman and M. Volosin, “Corticosterone is involved in foot shock-induced inactivity in rats,” Physiology and Behavior, Vol. 60, No. 3, 1996, pp. 795-801.
[16] N. Calvo, I. D. Martijena, V. A. Molina and M. Volosin, “Metyrapone pretreatment prevents the behavioral and neurochemical sequelae induced by stress,” Brain Research, Vol. 800, 1998, pp. 227-235.
[17] H. J. Krugers, S. Maslam, J. Korf and M. Jo?ls, “The corticosterone synthesis inhibitor metyrapone prevents hypoxia/ischemia-induced loss of synaptic function in the rat hippocampus,” Stroke, Vol. 31, 2000, pp. 1162-1172.
[18] V. L. Smith-Swintosky, L. C. Pettigrew, R. M. Sapolsky, C. Phares, S. D. Craddock, S. M. Brooke and M. P. Mattson, “Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures,” Journal of Cerebral Blood Flow and Metabolism, Vol. 16, 1996, pp. 585-598.
[19] B. A. Stein and R. M. Sapolsky, “Chemical adrenalectomy reduces hippocampal damage induced by kainic acid,” Brain Research, Vol. 473, 1988, pp. 175-180.
[20] O. D. Bruno, P. Metzger and W. J. Malaisse, “Inhibitory effect of metyrapone on glucose utilization by brain and muscle and on insulin release by the pancreas,” Acta Endocrinologica, Vol. 70, No. 4, 1972, pp. 710-718.
[21] G.-F. Kahl and K. J. Netter, “The effect of metyrapone on cellular respiration and microsomal drug oxidation,” Biochemical Pharmacology, Vol. 19, 1970, pp. 27-34.
[22] S. M. Bl?ttner, F. Rencurel, M. R. Kaufman and U. A. Meyer, “In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase,” Proceeding of the National Academy of Science of the United States of America, Vol. 104, No. 3, 2007, pp. 1045-1050.
[23] J. L. Harvey, A. J. Paine, P. Maurel and M. C. Wright, “Effect of the adrenal 11-b-hydroxylase inhibitor metyrapone on human hepatic cytochrome P-450 expression: induction of cytochrome P-450 3A4,” Drug Metabolism and Disposition, Vol. 28, No. 1, 2000, pp. 96- 101.
[24] C. Parthasarathy, S. Yuvaraj, R. Sivukumar, B. Ravi Sankar and K. Balasubramanian, “Metyrapone-induced corticosterone deficiency impairs glucose oxidation and steroidogenesis in Leydig cells of adult albino rats,” Endocrine Journal, Vol. 49, No. 4, 2002, pp. 405-412.
[25] G. Bannenberg, H.-J. Martin, I. Bélai and E. Maser, “11b-hydroxysteroid deshydrogenase type 1: tissue-specific expression and reductive metabolism of some anti-insect agent azole analogue of metyrapone,” Chemico-Biological Interactions, Vol. 143-144, 2003, pp. 449-457.
[26] B. Testa and P. Jenner, “Inhibitors of Cytochrome P-450s and their mechanism of action,” Drug Metab Rev, Vol. 12, No. 1, 1981, pp. 1-117. doi:10.3109/03602538109011082
[27] B. Darvas, I. Bélai, A. Fónagy, P. Kulcsár and M. H. Tag El-Din, “Lethal disturbances in larval development of Neobellieria bullata caused by metyrapone derivatives,” Pesticide Science, Vol. 32, No. 2, 1991, pp. 133-139. doi:10.1002/ps.2780320202
[28] L. Roumen, M. P. A. Sanders, K. Pieterse, P. A. J. Hilbers, R. Plate, E. Custers, M. d. Gooyer, J. F. M. Smits, I. Beugels, J. Emmen, H. C. J. Ottenheijm, D. Leysen and J. J. R. Hermans, “Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics,” Journal of Computer Aided Molecular Design, Vol. 21, 2007, pp. 455-471.
[29] M. Murray, R. M. Sefton, R. Martini and A. M. Butler, “Comparative induction of CYP3A and CYP2B in rat liver by 3-benzoylpyridine and metyrapone,” Chemico- Biological Interactions, Vol. 113, 1998, pp. 161-173.
[30] G. Fantuzzi, L. Cantoni, M. Sironi and P. Ghezzi, “Inhibitors of cytochrome P450 suppress tumor necrosis factor production,” Cellular Immunology, Vol. 150, 1993, pp. 417-424.
[31] U. F?rstermann, U. Alheid, J. C. Fr?lich and A. Mülsch, “Mechanisms of action of lipoxygenase and cytochrome P-450-mono-oxygenase inhibitors in blocking endothelium-dependent vasodilatation,” British Journal of Pharmacology, Vol. 93, 1988, pp. 569-578.
[32] D. J. Stuehr and M. Ikeda-Saito, “Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like hemeproteins that contain a flavin semiquinone radical,” Journal of Biological Chemistry, Vol. 267, No. 29, 1992, pp. 20547-20550.
[33] A. G. Hildenbrandt, “The binding of metyrapone to cytochrome P-450 and its inhibitory action on liver microsomal mixed-function oxidase reactions,” The Proceedings of the Biochemical Society, pp. 6-7.
[34] R. W. Estabrook, D. Y. Cooper and O. Rosenthal, “The Light Reversible Carbon Monoxide Inhibition of the Steroid C21-Hydroxylase System of the Adrenal Cortex,” Biochem Z, Vol. 338, 1963, pp. 741-755.
[35] P. A. Williams, J. Cosme, D. M. Vinkovic, A. Ward, H. C. Angove, P. J. Day, C. Vonrhein, I. J. Tickle and H. Jhoti, “Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone,” Science, Vol. 305, No. 30 july, 2004, pp. 683-686.
[36] W. Li, H. Liu, X. Luo, W. Zhu, Y. Tang, J. R. Halpert and H. Jiang, “Possible pathway(s) of metyrapone egress from the active site of cytochrome P450 3A4: A molecular dynamics simulation,” Drug Metabolism and Disposition, Vol. 35, No. 4, 2007, pp. 689-696.
[37] S. Lupien, R. Richter, S. C. Risen, A. Mirow, J. C. Gillin and R. L. Hauger, “Time course of the corticosteroid- dopaminergic interaction during metyrapone and dexamethasone administration,” Psychiatry Research, Vol. 58, No. 1, 1995, pp. 23-35. doi:10.1016/0165-1781(95)02646-E
[38] S. Kawato, M. Yamada and T. Kimoto, “Brain neurosteroids are 4th generation neuromessengers in the brain: Cell biophysical analysis of steroid signal transduction,” Advances in Biophysics, Vol. 37, 2003, pp. 1-48. doi:10.1016/S0065-227X(03)80002-3
[39] D. Canet, J. C. Boubel and E. Soulas, “La RMN, concepts, méthodes et applications,” Dunod eds., Paris, 2002.
[40] E. Dennis and A. Plückthun, “Phosphorus 31P-NMR: Principles and applications,” Academic Press, London, 1984.
[41] P. Job, “Etude spectrographique de la formation de complexes en solution et de leur stabilité,” CRAcadSci, Vol. 180, 1925, pp. 918-930.
[42] F. Djeda?ni, “Etude par RMN des phénomènes d’inclusion et d’adaptation moléculaire dans les cyclodextrines naturelles et les dérivés synthétiques,” Ph.D. Thesis, Université de Paris Sud, Paris, 1991.
[43] J. C. Debouzy, A. Gadelle, F. Fauvelle, S. Aous, J. Y. Pailler, E. Gentilhomme, P. Perrin and F. Lhoste, “Is uranyl scavenger hexakis(3,6-anhydro) tetrakis(2A,B,D, E-O-octyl) cyclomaltohexaose (OCT) relevant with biosystems?,” Boll Chim Farm, Vol. 140, No. 1, 2001, pp. 4-8.
[44] B. J. Gaffney, “Pratical considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes,” In: R. J. Berliner, ed., Spin Labelling Theory and Applications, Academic Press, New York London, 1976, pp. 567-571.
[45] A. Gornicki and A. Gutsze, “In vitro effects of ozone on human erythrocyte membranes: an EPR study,” Acta Biochim Pol, Vol. 47, No. 4, 2000, pp. 963-971.
[46] S. Mabrey and J. M. Sturtevant, “Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proceedings of the National Academy of Sciences,” Proceedings of the National Academy of Sciences, Vol. 73, No. 11, 1976, pp. 3862-3866.
[47] E. J. Dufourc, C. Mayer, J. Stohrer, G. Althoff and G. Kothe, “Dynamics of phosphate head group in biomembranes. Biophys J,” Biophys J, Vol. 61, 1992, pp. 42-57.
[48] D. Gorenstein, “31P-NMR: principles and applications,” Academic press, London, 1984.
[49] S. Follot, J. C. Debouzy, D. Crouzier, C. Enguehard-Gueiffier, A. Gueiffier, F. Nachon, B. Lefebvre and F. Fauvelle, “Physicochemical properties and membrane interactions of anti-apoptotic derivatives 2-(4-fluoro- phenyl)-3-(pyridin-4-yl)imidazo[1,2-a]pyridine depending on the hydroxyalkylamino side chain length and conformation: an NMR and ESR study,” Eur J Med Chem, Vol. 44, No. 9, 2009, pp. 3509-3518. doi:10.1016/j.ejmech.2008.12.026
[50] K. Wüthrich, “Structure and dynamics in proteins of pharmacological interest,” Biochemical Pharmacology, Vol. 40, No. 1, 1990, pp. 55-62. doi:10.1016/0006-2952(90)90178-N
[51] M. P. Besenicar, A. Bavdek, A. Kladnik, P. Macek and G. Anderluh, “Kinetics of cholesterol extraction from lipid membranes by methyl-[beta]-cyclodextrin-A surface plasmon resonance approach,” Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1778, No. 1, 2008, pp. 175-184. doi:10.1016/j.bbamem.2007.09.022
[52] S. Bernèche, M. Nina and B. Roux, “Molecular Dynamics Simulation of Melittin in a Dimyristoylphosphatidylcholine Bilayer Membrane,” Biophysical Journal, Vol. 75, No. 4, 1998, pp. 1603-1618. doi:10.1016/S0006-3495(98)77604-0
[53] J. C. Debouzy, D. Crouzier and E. Flahaut, “Hydrophobic double walled carbon nanotubes interaction with phopholipidic model membranes: 1H-, 2H-, 31P NMR and ESR study,” Environmental Toxicology and Pharmacology, Vol. 30, No. 2, 2010, pp. 147-152. doi:10.1016/j.etap.2010.05.002
[54] B. Cybulska, M. Herve, E. Borowski and C. M. Gary-Bobo, “Effect of the polar head structure of polyene macrolide antifungal antibiotics on the mode of permeabilization of ergosterol- and cholesterol-containing lipidic vesicles studied by 31P-NMR,” Mol Pharmacol, Vol. 29, No. 3, 1986, pp. 293-298.
[55] J. I. Kaplan and G. Fraenkel, “NMR of exchanging systems,” Press A ed., New-York, 1980.
[56] J. H. Fuhrhop and J. Koning, “Membranes and molecular assemblies: the synkinetics approach,” Chemistry TRSo, ed., Cambridge, 1994.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.