Share This Article:

Basic biological aspects of Tritrichomonas foetus of re-levance to the treatment of bovines suffering of tricho-moniasis

Abstract Full-Text HTML Download Download as PDF (Size:117KB) PP. 112-120
DOI: 10.4236/ojas.2011.13015    5,708 Downloads   10,756 Views   Citations

ABSTRACT

Tritrichomonas foetus is a flagellate protozoan and the etiological agent of bovine genital tri-chomoniasis [1], which is an infectious vene- real disease. This parasite is usually found as- sociated with the mucosal surface of the uro- genital tract in females or the male preputial and penile membranes. In females, the clinical ma-nifestations may include abortion, with repe- tition of estrus at irregular intervals, vaginitis, cervicitis, endometritis, and pyometra. Parasi- tized males may have a discharge with small nodules in the preputial membrane. After that, the bulls have no clinical symptoms, and are thus an asymptomatic carrier that may spread the infection. Considering that a bull could cover up to twenty females [2], bovine genital trichomoniasis is a serious medical and veteri- nary problem, with economical repercussion for beef and milk production. As T. foetus is an amitochondrial and aerotolerant organism, en- ergy production under low O2 tension in the protozoan is done via hydrogenosome, which, as the name suggests, is the organelle where H2 is generated [3,4,5]. The molecular machinery of mitochondrial cell death is, therefore, absent in this parasite and the mechanism that activates of cell death program is not clear. This review seeks to understand the characteristics of the protozoan parasite T. foetus in order to propose new therapies for animals suffering from this infectious and contagious agent.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Silva, N. , Machado, S. , Filho, F. and Pacheco-Soares, C. (2011) Basic biological aspects of Tritrichomonas foetus of re-levance to the treatment of bovines suffering of tricho-moniasis. Open Journal of Animal Sciences, 1, 112-120. doi: 10.4236/ojas.2011.13015.

References

[1] Pellegrin, A.O. and Leite, R.C. (2003) Atualiza??o sobreTricomonose genital bovina – Corumbá: Embrapa Pantanal.
[2] Guida, H.G., Ramos, A.A., Coelho, N.M., Ramos, J.A. and Mendonza, T. R. (1972) Incidência de Trichomonas foetus em reprodutores bovinos da regi?o centro-sul do Brasil. Pesq. Agrop. Brazil Veterinary Services, 7, 23-25.
[3] Kulda, J. (1999) Trichomonads\hydrogenosomes and drug resistance. International. Journal for Parasitology, 29, 199-212. doi:10.1016/S0020-7519(98)00155-6
[4] Lindmark, D.G. and Muller, M. (1973) Hydrogenosome a cytoplasmic organelle of the anaerobic flagellate Tri- trichomonas foetus and its role in pyruvate metabolism. Journal of. Biological Chemistry, 248, 7724-7728.
[5] Muller, M. (1993) The hydrogenosome. Journal of. Gen-eral Microbiology, 139, 2879-2889.
[6] Cavalier-Smith, T. (1993) Kingdon protozoa and its 18 phyla. Microbiology Reviews, 57, 953-994.
[7] Bondurant, R.H. (1997) Pathogenesis, diagnosis, and management of Trichomoniasis in cattle. Veterinary Clinics of North America: Food Animal Practice, 13, 345-361.
[8] Gomes, M.J.P. (2008) Tritrichomonas foetus, Faculdade de Veterinária UFRGS, Microbiologia Clínica, 2008-1. http://www.ufrgs.br/labacvet/pdf/Tricho_2008-1.pdf
[9] Pellegrin, A.O. (1999) A campilobacteriose e tricomo- nose s?o doen?as emergentes? Revista Brasileira Animal Reproduction, 23, 523-531.
[10] Rae, D.O. and Crews, J.E. (2006) Tritrichomonas foetus Veterinary Clinics of Food Animal, 22, 595-611.
[11] Yule, A., Skirrow, S.Z. and Bonduran, R.H. (1989) Bo- vine trichomoniasis. Parasitology Today, 5, 373-377. doi:10.1016/0169-4758(89)90298-6
[12] Parsonson, I.M., Clark, B.L. and Dufty, J. (1974) The pathogenesis of Tritrichomonas foetus infection in the bull. Australian Veterinary Journal, 50, 421-423. doi:10.1111/j.1751-0813.1974.tb06861.x
[13] Parsonson, I.M., Clark, B.L. and Dufty, J.H. (1976) Early pathogenesis and pathology of Tritrichomonas foetus in- fection in virgin heifers. Journal of Comparative Pa-thology, 86, 59-66. doi:10.1016/0021-9975(76)90028-1
[14] Honigberg, B.M. (1963) Evolutionary and systematic relationships in the flagellate order Trichomonadida Kirby. Journal of Protozoology, 10, 10-63.
[15] Kleina, P., Bettim-Bandinelli, J., Bonatto, S.L., Benchi- mol, M. and Bogo, M. (2004) Molecular phylogeny of Trichomonadidae family inferred from ITS-1, 5.8S rRNA and ITS-2 sequences. International Journal of Parasi-tology, 34, 963-970. doi:10.1016/j.ijpara.2004.04.004
[16] Tachezy, J., Tachezy, R., Hampl, V., Sedinova, M., Va- nacova, S., Vrlik, M., Van Ranst, M., Flegr, J. and Kulda, A.J. (2002) Cattle pathogen Tritrichomonas foetus (Riedmuller, 1928) and pig commensal Tritrichomonas suis (Gruby and Delafond, 1843) belong to the same spe- cies. Journal of Eukaryotic Microbiology, 49, 154-163. doi:10.1111/j.1550-7408.2002.tb00360.x
[17] Guimar?es, M.A. (2008) Curso PFIZER, Módulo Tricomonose Bovina. http://www.camposecarrer.com.br/reproducao/Tricomonosebovina.doc
[18] Reis, I.A., Martinez, M.P., Yarlett, N., Johnson, P.J., Silva- Filho, F.C. and Vannier-Santos, M.A. (1999) Inhibition of Polyamine Synthesis Arrests Trichomonad Growth and Induces Destruction of Hydrogenosomes. Antimicrobial Agents and Chemotherapy, 43, 1919-1923.
[19] Yarlett, N. (1988) Polyamine biosynthesis and inhibition in Trichomonas vaginalis. Parasitology Today, 4, 3- 57-360. doi:10.1016/0169-4758(88)90007-5
[20] Bonilha, V.L., Ciavaglia, M.C., De Souza, W. and Silva- Filho, F.C. (1995) The involvement of terminal carbohy- drates of the mammalian cell surface in the cytoadhesion of trichomonads. Parasitology Research, 81, 121-126. doi:10.1007/BF00931616
[21] De Carli, G.A., Tasca, T. and Pires Borges, F. (2004) Tritrichomonas foetus: A scanning electron microscopy study of erythrocyte adhesion associated with hemolytic activity. Veterinary Research, 35, 123-130. doi:10.1051/vetres:2003042
[22] López, L.B., Braga, M.B., López, J.O., Arroyo, R. and Costa e Silva Filho, F. (2000) Strategies by which some pathogenic trichomonads integrate diverse signals in the decision-making process. Academia Brasileira de Ciências, 72, 173-186.
[23] Petrópolis Petropolis, D.B., Fernandes Rodrigues, J.C., Da Rocha-Azevedo, B. and Silva-Filho, F.C. (2008) The binding of Tritrichomonas foetus to immobilized lami-nin-1 and its role in the cytotoxicity exerted by the parasite. Microbiology, 154, 2283-2290. doi:10.1099/mic.0.2007/015941-0
[24] Benchimol, M. and Bernardino, M.V. (2002) Ultrastruc- tural localization of glycoconjugates in Tritrichomonas foetus. Parasitology Research, 88, 134-143. doi:10.1007/s004360100466
[25] Da Silva, N.S., Dias Filho, B.P. and De Souza, W. (1999) Identification and localization of an adhesin on the sur- face of Tritrichomonas foetus. Parasitology Research, 85, 984-992. doi:10.1007/s004360050670
[26] Silva-Filho, F.C. and De Souza, W. (1988) The interact- tion of Trichomonas vaginalis and Tritrichomonas foetus with epithelial cells in vitro. Cell Structure and Function, 13, 301-310. doi:10.1247/csf.13.301
[27] Silva-Filho, F.C. and De Souza, W. (1986) Effect of col- chicine, vimblastine and cytochalasin B on cell surface anionic site of Tritrichomonas foetus. Journal of Proto-zoology, 33, 6-10.
[28] Silva-Filho, F.C., De Souza, W. and Lopes, J.D. (1988) Presence of laminin-binding proteins in trichomonads and their role in adhesion. Proceedings of the National Academy of the United States of America, 85, 8042-8046. doi:10.1073/pnas.85.21.8042
[29] Da Silva, N.S., Dias Filho, B.P. and De Souza, W. (1996) Structural changes at the site of Tritrichomonas foe- tus-erythrocyte interaction. Cell Structure and Function, 21, 245-250. doi:10.1247/csf.21.245
[30] Singh, B.N., Lucas, J.J., Hayes, G.R., Kumar, I., Beach, D.H., Frajblat, M., Gilbert, R.O., Sommer, U. and Cos-tello, C.E. (2004) Tritrichomonas foetus induces apoptotic cell death in bovine vaginal epithelial cells. Infection and Immunity, 72, 4151-4158. doi:10.1128/IAI.72.7.4151-4158.2004
[31] Bondurant, R.H. (1985) Diagnosis, treatment and control of bovine trichomoniasis. The Compedium on Continuing Education, 7, S179-188.
[32] Clark, B.L., Dufty, J.H. and Parsonson, I.M. (1983) The effect of Tritrichomonas foetus on calving rates in beef cattle. Australian Veterinary Journal, 60, 71-74. doi:10.1111/j.1751-0813.1983.tb05873.x
[33] Grab, D.J., Lonsdale-Eccles, J.D., Oli, M.W. and Corbeil, L.B. (2001) Lactoferrin-binding proteins of Tritricho- monas foetus. Journal of Parasitology, 87, 1064-1070.
[34] Melo Braga, M.B. (2000) A express?o de cisteíno proteinases em Tritrichomonas foetus é regulada por ferro. Rio de Janeiro, Tese (Mestrado), Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho.
[35] Anderson, M.L., Barr, B.C. and Conrad, P.A. (1994) Protozoal causes of reproductive failure in domestic ru- minants. Veterinary Clinics of North America: Food An-imal Practice, 10, 439-461.
[36] Hammond, D.M. and Bartlett, D.E. (1943) The distribu- tion of Trichomonas foetus in the prepucial cavity of in- fected bulls. American Journal of Veterinary Research, 4, 143-149.
[37] Roberts, S.J. (1986) Infections disease caused by inferti- lity in cows. In: Roberts, S.J., Ed., Veterinary obstetrics and genital diseases, 3rd Edition, Ann Arbor, MI: Ed- ward Brothers, Inc., 447-455.
[38] Peter, D. (1997) Bovine venereal diseases. In: Younguist, R.B., Ed., Current therapy in large animal theriogenol- ogy. Phyladelphia: WB Saunders Co., p.355-63.
[39] Aydintug, M.K., Leid, R.W. and Widders, P.R. (1990) Antibody enhances killing of Tritrichomonas foetus by the alternative bovine complement pathway. Infection and Immunity, 58, 944-948.
[40] Aydintug, M.K., Widders, P.R. and Leid, R.W. (1993) Bovine polymorphonuclear leukocyte killing of Tri- tri-chomonas foetus. Infection and Immunity, 61, 2995-3002.
[41] Kirkwood, M.L., Clemens, D.L. and Johnson, P.J. (2001) Loss of Multiple Hydrogenosomal Proteins Associated with Organelle Metabolism and High-Level Drug Resis- tance in Trichomonads. Experimental Parasitology, 97, 102-110. doi:10.1006/expr.2001.4587
[42] Land, K.M., Clemens, D.L. and Johnson, P.J. (2001) Loss of Multiple Hydrogenosomal Proteins Associated with Organelle Metabolism and High-Level Drug Resis- tance in Trichomonads. Experimental Parasitology, 97, 102-110. doi:10.1006/expr.2001.4587
[43] Edwards, D.I. (1993) Nitroimidazole drugs-action and resistance mechanism. 1. Mechanism of action. Journal of Antimicrobial Chemotherapy, 31, 2-20. doi:10.1093/jac/31.1.9
[44] Meingassner, J.G. and Mieth, H. (1976) Cross-resistance of trichomonads to 5-nitroimidazole derivatives. Experi- entia, 32, 183-184. doi:10.1007/BF01937754
[45] Edwards, D.I. (1980) Mechanisms of selective toxicity of metronidazole and other nitroimidazole drugs. British Journal of Venereal Diseases, 56, 285-290.
[46] Moreno, S.N.J. and Docampo, R. (1985) Mechanism of Toxicity of Nitro Compounds Used in the Chemotherapy of Trichomoniasis. Environmental Health Perspectives, 64, 199-208. doi:10.1289/ehp.8564199
[47] Ferreira, S.R.M., Tedesco, A.C., Sousa, G., Zangaro, R.A., Silva, N.S., Pacheco, M.T.T. and Pacheco-Soares, C. (2004) Analysis of mitochondria, endoplasmic reticulum and actin filaments after PDT with AlPcS4. Lasers in Medical Science, 18, 207-212. doi:10.1007/s10103-003-0282-6
[48] Calzavara-Pinton, P.G., Venturini, M., Capezzera, R., Sala, R. and Zane, C.(2004).Photodynamic therapy of interdigital mycoses of the feet with topical application of 5-aminolevulinic acid. Photodermatology, Photoim-munology and Photomedicine, 20, 144-147. doi:10.1111/j.1600-0781.2004.00095.x
[49] Hamblin, M.R. and Hasan, T. (2004) Photodynamic therapy: A new antimicrobial approach to infectious dis- ease? Photochemdicine Photobiology, 3, 436-450. doi:10.1039/b311900a
[50] Machado, A.E.H. (2000) Terapia fotodinamica: Prin- cípios, potencial de aplica??o e perspectivas. Quimica Nova, 23, 237-243. doi:10.1590/S0100-40422000000200015
[51] Raab, O. (1990) Uber die wirkung fluoreszierenden stoffen. Infusuria Z. Biology, 39, 524-546.
[52] Sibata, C.H., Colussi, V.C., Oleinick, N.L. and Kinsella, T.J. (2000) Photodynamic therapy: A new concept in medical treatment. Brazil Journal of Medical and Bio-logical Research, 33, 869-880. doi:10.1590/S0100-879X2000000800002
[53] Fisher, A.M.R., Murphree, A.L. and Gomer, C.J. (1995) Clinical and preclinical photodynamic therapy. Lasers in Surgery and Medicine, 17, 2-31. doi:10.1002/lsm.1900170103
[54] Rokitskaya, T. I., Block, M., Antonenko, Y. N., Kotova, E. A. and Polt, P. (2000) Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels. Biophysical Journal, 78, 2572-2580. doi:10.1016/S0006-3495(00)76801-9
[55] Martins, J., Almeida, L. and Laranjinha, J. (2004) Simul- taneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low density lipoproteins. Implica- tions for photodynamic therapy. Photochemistry and Photobiology, 80, 267-273. doi:10.1562/2004-03-26-RA-124.1
[56] Pazos, M.C., Pacheco-Soares, C., Da Silva, N.S., Da-matta, R.A. and Pacheco, M.T.T. (2003) Ultrastructural effects of two phthalocyanines in CHO-K1 and HeLa cells after laser irradiation. Biology of the Cell, 27, 301-309.
[57] Schieke, S.M., Von Montfort, C., Buchczyk, D.P., Tim-mer, A., Grether-Beck, S., Krutmann, J., Holbrook, N.J. and Klotz, L.O. (2004) Singlet oxygen-induced at- tenua-tion of growth factor signaling: Possible role of ce- ra-mides. Free Radicals Research, 38, 729-737. doi:10.1080/10715760410001712764
[58] Jacobson, M.D., Weil, M. and Raff, M.C. (1997) Pro- grammed cell death in animal development. Cell, 88, 347-354. doi:10.1016/S0092-8674(00)81873-5
[59] Meier, P., Finch, A. and Evan, G. (2000) Apoptosis in development. Nature, 407, 796-801. doi:10.1038/35037734
[60] Steller, H. (1995) Mechanisms and genes of cellular sui- cide. Science, 267, 1445-1449. doi:10.1126/science.7878463
[61] Vaux, D.L. and Korsmeyer, J. (1999) Cell death in de- velopment. Cell, 96, 245-254. doi:10.1016/S0092-8674(00)80564-4
[62] Mignotte, B. and Vayssiere, J.L. (1998) Mitochondria and apoptosis. European Journal of Biochemistry, 15, 1-15. doi:10.1046/j.1432-1327.1998.2520001.x
[63] Lemasters, J.J. (2005) Dying a thousand deaths: Redun- dant pathways from different organelles to apoptosis and necrosis. Gastroenterology, 129, 351-360. doi:10.1053/j.gastro.2005.06.006
[64] Candal, E., Anadón, R., Degrip, W.J. and Rodríguez- Moldes, I. (2005) Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Developmental Brain Research, 154, 101-119. doi:10.1016/j.devbrainres.2004.10.008
[65] Guimar?es, C.A. and Linden, R. (2000) Programmed cell deaths. European Journal of Biochemistry, 271, 1638-1650.
[66] Klionsky, D.J. and Emr, S.D. (2000) Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717-1721. doi:10.1126/science.290.5497.1717
[67] Lockshin, R.A. and Zakeri, Z. (2001) Programmed cell death and apoptosis: Origins of the theory. Nature Reviews Molecular Cell Biology, 2, 545-550. doi:10.1038/35080097
[68] Bursch, W., Hochegger, K., Torok, L., Marian, B., Ellin- ger, A. and Hermann, R.S. (2000) Autophagic and apop- totic types of programmed cell death exhibit different fates of cytoskeletal filaments. Journal of Cell Science, 113, 1189-1198. doi:10.1007/s00418-003-0548-x
[69] Mariante, R.M., Guimar?es, C.A., Linden, R. and Ben-chimol, M. (2003) Hydrogen peroxide induces cas- pase activation and programmed cell death in the amito- chondrial Tritrichomonas foetus. Histochemistry and Cell Biology, 120, 129-141.
[70] Mariante, R.M., Vancini, R.G. and Benchimol, M. (2006) Cell death in trichomonads: New insights. Histochemistry and Cell Biology, 125, 545-556. doi:10.1007/s00418-005-0098-5
[71] Da Silva, N.S., Ribeiro, C.M., Machado, A.H.A. and Pacheco-Soares, C. (2007) Ultrastructural changes in Tritrichomonas foetus after treatments with AlPcS4 and photodynamic therapy. Veternary Parasitology, 146, 175-181. doi:10.1016/j.vetpar.2007.02.006
[72] Metzstein, M.M., Stanfield, G.M. and Horvitz, H.R. (1998) Genetics of programmed cell death in C. elegans: Past, present and future. Trends in Genetics, 14, 410-416. doi:10.1016/S0168-9525(98)01573-X
[73] Vancini, R.G. and Benchimol, M. (2005) Appearance of virus-like particles in Tritrichomonas foetus after drug treatment. Tissue and Cell, 37, 317-323. doi:10.1016/j.tice.2005.03.009

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.