Share This Article:

ZnO Nanoparticles: Synthesis and Adsorption Study

Abstract Full-Text HTML Download Download as PDF (Size:685KB) PP. 129-135
DOI: 10.4236/ns.2009.12016    15,691 Downloads   35,827 Views   Citations


A low-cost, green and reproducible probiotic microbe (Lactobacillus sporogens) mediated biosynthesis of ZnO nanoparticles is reported. The synthesis is performed akin to room tem-perature in five replicate samples. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of ZnO nanoparticles. Rietveld analysis to the X-ray data indicated that ZnO nanoparticles have hexagonal unit cell structure. Individual nanoparticles having the size of 5-15 nm are found. A possible involved mechanism for the synthesis of ZnO nanoparticles has been pro-posed. The H2S adsorption characteristic of ZnO nanoparticles has also been assayed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Prasad, K. and K. Jha, A. (2009) ZnO Nanoparticles: Synthesis and Adsorption Study. Natural Science, 1, 129-135. doi: 10.4236/ns.2009.12016.


[1] Jha, A.K., Prasad, K. and Prasad, K. (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Engg J, 43, 303-306.
[2] Jha, A.K., Prasad, K. and Kulkarni, A.R. (2009) Synthe-sis of TiO2 nanoparticles using microorganisms. Colloid Surf B: Bioint, 71, 226–229.
[3] Park, S., Lee, J.–H., Kim, H.–S., Park, H.–J. and Lee, J. C. (2009) Effects of ZnO nanopowder dispersion on photocatalytic reactions for the removal of Ag+ ions from aqueous solution. J Electroceram, 22, 105–109.
[4] Wang, Z.L. (2008) Energy harvesting for self-powered nanosystems. Nano Res, 1, 1-8.
[5] Botello-Méndez, A.R., López-Urías, F., Terrones, M. and Terrones, H. (2008) Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur. Nano Res, 1, 420-426.
[6] Grigorjeva, L., Millers, D., Grabis, J., Monty, C., Kalinko, A., Smits, K., Pankratov, V. and Lojkowski, W. (2008) Luminescence properties of ZnO nanocrystals and ce-ramics. IEEE Trans Nucl Sci, 55, 1551-1555.
[7] Daneshvar, N., Aber, S., Seyed Dorraji, M.S., Khataee, A.R. and Rasoulifard, M.H. (2008) Preparation and in-vestigation of photocatalytic properties of ZnO nanocrystals: effect of operational parameters and kinetic study. Int J Chem Biomol Engg, 1, 24-29.
[8] Lee, C.–Y., Haung, Y.–T., Su, W.–F. and Lin, C.-F. (2006) Electroluminescence from ZnO nanoparticles/organic nanocomposites. Appl Phys Lett, 89, 231116-231118.
[9] Tong, Y.H., Liu, Y.C., Lu, S.X., Dong, L., Chen, S.J. and Xiao, Z.Y. (2004) The optical properties of ZnO nanoparticles capped with polyvinyl butyral. J Sol-Gel Sci Tech, 30, 157-61.
[10] Moghaddam, A.B., Nazari, T., Badraghi, J. and Ka-zemzad, M. (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci, 4, 247–257.
[11] Shokuhfar, T., Vaezi, M.R., Sadrnezhad, S.K. and Sho-kuhfar, A. (2008) Synthesis of zinc oxide nanopowder and nanolayer via chemical processing. Int J Nanomanu-facturing, 2, 149-162.
[12] Kim, S.–J. and Park, D.-W. (2007) Synthesis of ZnO nanopowder by thermal plasma and characterization of photocatalytic property. Appl Chem, 11, 377-380.
[13] Vaezi, M.R. and Sadrnezhaad, S. (2007) Nanopowder synthesis of zinc oxide via solochemical processing. Ma-ter Design, 28, 515–519.
[14] Ge, M.Y., Wu, H.P., Niu, L., Liu, J.F., Chen, S.Y., Shen, P.Y., Zeng, Y.W., Wang, Y.W., Zhang, G.Q. and Jiang, J.Z. (2007) Nanostructured ZnO: from monodisperse nanopar-ticles to nanorods. J Cryst Growth, 305, 162–166.
[15] Hambrock, J., Rabe, S., Merz, K., Birkner, A., Wohlfart, A., Fischer, R.A. and Driess, M. (2003) Low-temperature approach to high surface ZnO nanopowders and a non-aqueous synthesis of ZnO colloids using the sin-gle-source precursor [MeZnOSiMe3]4 and related zinc siloxides. J Mater Chem, 13, 1731–1736.
[16] Kwon, Y.J., Kim, K.H., Lim, C.S. and Shim, K.B. (2002) Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route. J Ceram Process Res, 3, 146-149.
[17] Prasad, K., Jha, A.K. and Kulkarni, A.R. (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotech, in press.
[18] Prasad, K., Jha, A.K. and Kulkarni, A.R. (2007) Microbe mediated nano transformation: cadmium. NANO: Brief Rep Rev, 2, 239-242.
[19] Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H. and Nohi, A.-A. (2007) Rapid synthesis of silver nanoparticles using culture supernatants of entrobacteria: a novel biological approach. Process Biochem, 42, 919-923.
[20] Husseiny, M.I., Abd El-Aziz, M., Badr, Y. and Mahmoud, M.A. (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A, 67, 1003-1006.
[21] Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnol, 19, 15-20.
[22] Gericke, M. and Pinches, A. (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy, 83, 132-140.
[23] Senapati, S., Ahmad, A., Khan, M.I., Sastry, M. and Kumar, R. (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 1, 517-520.
[24] Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralizar, K.M. and Balasubramanya, R.H. (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett, 61, 1413-1418.
[25] Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Bio-synthesis of nanoparticles: technological concepts and future applications. J Nanopart Res, 10, 507-517.
[26] Mandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, G. and Mukherjee, P. (2006) The use of microorganisms for the formation of metal nanoparticles and their appli-cation. Appl Microbiol Biotechnol, 69, 485-492.
[27] Bansal, V., Rautaray, D., Barred, A., Ahire, K., Sanyal, A. and Ahmad, A. (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem, 15, 2583-2589.
[28] Sadowski, Z., Maliszewska, I.H., Grochowalska, B., Polowczyk, I. and Ko?lecki, T. (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci-Poland, 26, 419-424.
[29] Joerger, R., Klaus, T. and Granqvist, C.G. (2001) Bio-logically produced silver-carbon composite materials for optically functional thin-film coating. Adv Mater, 12, 407-409.
[30] Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajaykumar, P.V., Alam, M., Kumar, R. and Sastry, M. (2001) Fun-gus–mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett, 1, 515-519.
[31] Ankamwar, B., Damle, C., Absar, A. and Sastry, M. (2005) Biosynthesis of gold and silver nanoparticles us-ing Emblica Officinalis fruit extract, their phase transfer and trans-metallation in an organic solution. J Nanosci Nanotechnol, 10, 1665-1671.
[32] Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Toroiani, H., Santiago, P. and Gardea-Torresdey, J.L. (2004) Size controlled gold nanoparticles formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res, 6, 377-382.
[33] Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci, 275, 496-502.
[34] Jha, A. K., Prasad, K., Kumar, V. and Prasad, K. (2009) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog, in print.
[35] Nair, B. and Pradeep, T. (2002) Coalescence of nano-clusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design, 2, 293-298.
[36] Haimour, N., El-Bishtawi, R. and Ail-Wahbi, A. (2005) Equilibrium adsorption of hydrogen sulfide onto CuO and ZnO. Desalination, 181, 145-152.
[37] Duan, Z., Sun, R., Liu, R. and Zhu, C. (2007) Accurate thermodynamic model for the calculation of H2S solubil-ity in pure water and brines. Energ Fuel, 21, 2056-2065.
[38] Roisnel, J. and Rodr?guez-Carvajal, J. (2000) Win-PLOTR; laboratoire leon brillouin (CEA-CNRS) centre d’Etudes de saclay: gif sur yvette cedex. France.
[39] Rodriguez-Carvajal, J. (2000) FullProf: A Rietveld Re-finement and Pattern Matching Analysis Program, (Ver-sion: April 2008). Laboratoire Léon Brillouin (CEA-CNRS), France.
[40] Williamson, G.K. and Hall, W.H. (1953) X-ray line broadening from filed aluminum and wolfram. Acta Metall, 1, 22-31.
[41] McCusker, L. B., Von Dreele, R. B., Cox, D. E., Lou?r, D. and Scardi, P. (1999) Rietveld refinement guidelines. J Appl Cryst, 32, 36-50.
[42] Fu, J.K., Liu, Y.Y., Gu, P.Y., Tang, D.L., Lin, Z.Y., Yao, B.X. and Wen, S.Z. (2000) Spectroscopic characteriza-tion on the biosorption and bioreduction of Ag(I) by Lactobacillus sp A09*. Acta Physico-Chimica Sinica, 16, 779-782.
[43] Jha, A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. (2009) Plant system: nature’s nanofactory. Colloid Surf B: Bioint, 73, 219-223.
[44] Jha, A.K., Prasad, K. and Prasad, K. (2009) Biosynthesis of Sb2O3 nanoparticles: A low cost green approach. Bio-technol J, in press.
[45] Davidson, E. (2004) Method and composition for scav-enging sulphide in drilling fluids. US Patent: 6476611.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.