A New Wave Equation of the Electron
Arbab I. Arbab
DOI: 10.4236/jmp.2011.29121   PDF   HTML     7,116 Downloads   14,854 Views   Citations


A new form of Dirac equation of a second order partial differential equation is found. With this wave equation the quivering motion (Zitterbewegung) is satisfactorily explained. A quaternionic analogue of Dirac equation is presented and compared with the ordinary Dirac equation. The two equations become the same if we replace the particle rest mass, m0, in the latter by im0. New space and time transformations in which these two equations represent a massless particle are found. The invariance of Klein-Gordon equation under these transformations yields the Dirac equation. The electron is found to be represented by a superposition of two waves with a group velocity equals to speed of light in vacuum.

Share and Cite:

A. Arbab, "A New Wave Equation of the Electron," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1012-1016. doi: 10.4236/jmp.2011.29121.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. D. Bjorken and S. D. Drell, “Relativistic Quantum Mechanics,” McGraw-Hill, Boston, 1964.
[2] L. Lamata, J. León, T. Sch?tz and E. Solano, “Dirac Equ-ation and Quantum Relativistic Effects in a Single Trapped Ion,” Physical Review Letters, Vol. 98, No. 25, 2007, Article ID: 253005. doi:10.1103/PhysRevLett.98.253005.
[3] D. Walter and H. Gies, “Probing the Quantum Vacuum: Perturbative Effective Action Approach,” Springer Ver-lang, Berlin, 2000..
[4] A. O. Barut and A. J. Bracken, “Zitterbewegung and the Internal Geometry of the Electron,” Physical Review D, Vol. 23, No. 10, 1981, pp. 2454-2463. doi:10.1103/PhysRevD.23.2454.
[5] A. I. Arbab, “The Quaternionic Quantum Mechanics,” arXiv: 1003.0075v1, 2010..
[6] G. Feinberg, “Possibility of Faster-Than-Light Particles,” Physical Review, Vol. 159, No. 5, 1967, pp. 1089-1105. doi:10.1103/PhysRev.159.1089.
[7] J. Ciborowski, “Hypothesis of Tachyonic Neutrinos,” Acta Physicsa Polonica B, Vol. 29, No. 1-2, 1998, pp. 113-121..
[8] R. G. H. Robertson, et al., “Limit on e ν Mass Observation of the β Decay of Molecular Tritium,” Physical Review Letters, Vol. 67, 1991, pp. 957-960. doi:10.1103/PhysRevLett.67.957.
[9] F. Gross, “Relativistic Quantum Mechanics and Field Theory,” John Wiley & Sons, Inc., Hoboken, 1993, p. 97.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.