Cr(VI) Ions Removal from Aqueous Solutions Using Natural Adsorbents – FTIR Studies

DOI: 10.4236/jep.2011.26084   PDF   HTML     9,923 Downloads   22,552 Views   Citations


The ability of eight natural adsorbents were investigated for adsorptive removal of Cr(VI) from aqueous solutions. Various physico-chemical parameters such as pH, initial metal ion concentration, adsorbent dose level and equi-librium contact time were optimized in batch adsorption technique. A detailed Fourier Transform Infrared Spectrophotometer (FTIR) study of adsorbents and Cr(VI) loaded adsorbents at the optimized condition was carried out to identify the different functional groups that were responsible for the adsorption. The important functional groups like hydroxyl, alkene, aromatic nitro, carboxilate anion, silicon oxide, sulphonic acid etc. were present in the natural adsorbent and were responsible for the chemical adsorption of Cr(VI) from aqueous solutions. The sorption energy calculated from Dubinin-Radushkevich isotherm indicated that the adsorption process were chemical in nature.

Share and Cite:

B. Singha, T. Naiya, A. Bhattacharya and S. Das, "Cr(VI) Ions Removal from Aqueous Solutions Using Natural Adsorbents – FTIR Studies," Journal of Environmental Protection, Vol. 2 No. 6, 2011, pp. 729-735. doi: 10.4236/jep.2011.26084.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. K. Bhattacharya, T. K. Naiya, S. N. Mandal and S. K. Das, “Adsorption, Kinetics and Equilibrium Studies on the Removal of Cr(VI) from Aqueous Solutions Using Different Low-Cost Adsorbents,” Chemical Engineering Journal, Vol. 137, No. 3, 2008, pp. 529-541. doi:10.1016/j.cej.2007.05.21
[2] E. Malkoc, Y. Nuhoglu and Y. Abali, “Cr(VI) Adsorption by Waste Acorn of Quercus ithaburensis in Fixed Beds: Prediction of Breakthrough Curves,” Chemical Engineering Journal, Vol. 119, No. 1, 2006, pp. 61-68. doi:10.1016/j.cej.2006.01.019
[3] N. Hsu, S. Wang, Y. Liao, S. Huang, Y. Tzou and Y. Huang, “Removal of Hexavalent Chromium from Acidic Aqueous Solutions Using Rice Straw-Derived Carbon,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 1066-1070. doi:10.1016/j.jhazmat.2009.06.112
[4] EPA (Environmental Protection Agency), “Environmental Pollution Control Alters,” EPA/625/5-90/025, EPA/625/4- 89/023, Cincinnati, 1990.
[5] Indian Standard, “Drinking water-specification,” 1st Revision, IS 10500, 1991.
[6] MINAS, “Pollution Control Acts, Rules, and Notification There under Central Pollution Control Board, 2001,” Ministry of Environment and Forests, Government of India, New Delhi, 2001.
[7] T. K. Naiya, A. K. Bhattacharjee, D. Sarkar, S. K. Das, “Applicability of Shrinking Core Model on the Adsorption of Heavy Metals by Clarified Sludge from Aqueous Solutions,” Adsorption, Vol. 15, 2009, pp. 354-364. doi:10.1007/s10450-009-9186-5
[8] S. K. Chatterjee, I. Bhattacharjee and G. Chandra, “Biosorption of Heavy Metals from Industrial Waste Water by Geobacillus thermodenitrificans,” Journal of Hazardous Materials, Vol. 175, No. 1-3, 2010, pp. 117-125. doi:10.1016/j.jhazmat.2009.09.136
[9] P. Miretzkya and A. F. Cirelli, “Cr(VI) and Cr(III) Removal from Aqueous Solutions by Raw and Modified Lignocellulosic Materials: A Review,” Journal of Hazardous Materials, Vol. 180, 2010, pp. 1-19. doi:10.1016/j.jhazmat.2010.04.060
[10] R. A. K. Rao and F. Rehman, “Adsorption Studies on Fruits of Gular (Ficus glomerata): Removal of Cr(VI) from Synthetic Wastewater,” Journal of Hazardous Materials, Vol. 181, No. 1-3, 2010, pp. 405-412. doi:10.1016/j.jhazmat.2010.05.025
[11] Y. Khambhaty, K. Mody, S. Basha and B. Jha, “Kinetics, Equilibrium and Thermodynamic Studies on Biosorption of Hexavalent Chromium by Dead Fungal Biomass of Marine Aspergillus niger,” Chemical Engineering Journal, Vol. 145, No. 3, 2009, pp. 489-495. doi:10.1016/j.cej.2008.05.002
[12] V. C. Srivastava, I. D. Mall and I. M. Mishra, “Characterization of Mesoporous Rice Husk Ash (RHA) and Adsorption Kinetics of Metal Ions from Aqueous Solutions onto RHA,” Journal of Hazardous Materials, Vol. B134, 2006, pp. 257-267. doi:10.1016/j.jhazmat.2005.11.052
[13] APHA, AWWA, WEF, “Standard Methods for Examination of Water and Wastewater,” 20th Edition, Washington DC, New York, 1998.
[14] M. Bansal, U. Garg, D. Singh and V. K. Garg, “Removal of Cr(VI) from Aqueous Solutionsusing Pre-consumer Processing Agricultural Waste: A Case Study of Rice Husk,” Journal of Hazardous Materials, Vol. 162, No. 1, 2009, pp. 312-320. doi:10.1016/j.jhazmat.2008.05.037
[15] S. Mallick, S. S. Dash and K. M. Parida, “Adsorption of Hexavalent Chromium on Manganese Nodule Leached Residue Obtained from NH3-SO3 Leaching,” Journal of Colloid and Interface Science, Vol. 297, 2006, pp. 419- 425. doi:10.1016/j.jcis.2005.11.001
[16] I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” Journal of the American Chemical Society, Vol. 40, 1914, pp. 1361-1403. doi:10.1021/ja02242a004
[17] M. M. Dubinin, E. D. Zaverina, L. V. Radushkevich, “Sorption and Structure of Active Carbons I. Adsorption of Organic Vapors,” Zhurnal Fizicheskoi Khimii, Vol. 21 1947, pp. 1351-1362.
[18] M. Polanyi, “Theories of the Adsorption of Gases. A General Survey and Some Additional Remarks,” Transactions of the Faraday Society, Vol. 28, 1932, pp. 316- 333. doi:10.1039/tf9322800316
[19] M. F. Sawalha, J. R. Peralta-Videa, J. Romero-Gonzalez and J. L. Gardea-Torresdey, “Biosorption of Cd(II), Cr(III), and Cr(VI) by Saltbush (Atriplex Canescens) Biomass: Thermodynamic and Isotherm Studies,” Journal of Colloid and Interface Science, Vol. 300, 2006, pp. 100-104. doi:10.1016/j.jcis.2006.03.029
[20] F. Helfferich, “Ion Exchange,” McGraw-Hill, New York, 1962, p. 166.
[21] U. R. Malik, S. M. Hasany and M. S. Subhani, “Sorptive Potential of Sunflower Stem for Cr(III) Ions from Aqueous Solutions and Its Kinetic and Thermodynamic Profile,” Talanta, Vol. 66, 2005, pp. 166-173. doi:10.1016/j.talanta.2004.11.013
[22] P. Pavasnt, R. Apiratikul, V. Sungkhum, P. Suthiparinyanont, S. Wattanachira and T. F. Marhaba, “Biosorption of Cu2+, Cd2+, Pb2+ and Zn2+ Using Dried Marine Green Macroalga Caulerpa Lentillifera,” Bioresource Technology, Vol. 97, No. 18, 2006, pp. 2321-2329. doi:10.1016/j.biortech.2005.10.032

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.