Distribution of Antimony in a Tropical Estuary Dominated by Mangroves

Abstract

Seasonal variation of antimony was studied in order to characterize its distribution in estuarine water, pore water, sediment, and digenetic behavior in the Sundarbans mangrove ecosystem. The mean concentration of dissolved inorganic Sb ranged between 230.8 and 303.1 ng L–1 over the period of study with a minimum during the post-monsoon closely associated with spring diatom bloom. Molecular diffusion flux of Sb was found greater than its value advected and deposited on sediment-water interface and there was significant remobilization of Sb in the Sundarbans mangrove ecosystem.

Share and Cite:

S. Mandal, N. Majumdar, C. Choudhury, R. Ray, M. Dutta and T. Jana, "Distribution of Antimony in a Tropical Estuary Dominated by Mangroves," Journal of Environmental Protection, Vol. 2 No. 6, 2011, pp. 840-847. doi: 10.4236/jep.2011.26095.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. J. Nash, J. E. Maskall and Hill, “Methodologies for Determination of Antimony in Terrestrial Environmental Samples,” Journal of Environmental Monitoring, Vol. 2, 2000, pp. 97-109. doi:10.1039/a907875d
[2] M. Filella, N. Belzile and Y. W. Chen, “Antimony in the Environment: A Review Focused on Natural Waters I. Occurrence,” Earth Science Review, Vol. 57, No. 1-2, 2002, pp. 125-176. doi:10.1016/S0012-8252(01)00070-8
[3] M. Filella, N. Belzile and Y.-W. Chen, “Antimony in the Environment: A View Focused on Natural Waters: II. Relevant Solution Chemistry,” Earth-Science Review, Vol. 59, No. 1, 2002, pp. 265-285. doi:10.1016/S0012-8252(02)00089-2
[4] M .Filella, P.A. Williams and N. Belzila, “Antimony in the Environment: Knowns and Unknowns,” Environ- mental Chemistry, Vol. 6, No. 2, 2009, pp. 95-105. doi:10.1071/EN09007
[5] Jr. J. F. Carlin, “Geological Survey Minearal Commodity Summaries, U.S.,” 2000.
[6] B. A. Fowler and P. L. Goering, “Antimony,” In: E. Merian, Ed., Metals and Their Compounds in the Environment, VCH, Weinheim, 1991.
[7] T. Crommentuijn, M. D. Polder and E. J. van de Plasche, “Maximum Permissible Concentrations and Negligible Concentrations of Metals, Taking Background Concentrations into Account,” RIVM Report No. 601501001, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 1997.
[8] A. Kabata-Pendias and H. Pendias, “Trace Elements in Soils and Plants,” CRC Press, Boca Raton, 1985.
[9] X. Huang, I. Olmez, N. K. Aras and G. E. Gordon, “Emission of Trace Elements from Motor Vehicles: Potential Marker Elements and Source Composition Profile,” Atmospheric Environment, Vol. 28, No. 8, 1994, pp. 1385-1391. doi:10.1016/1352-2310(94)90201-1
[10] C. Dietl, M. Waber, L. Peichl and O. Vierle, “Monitoring of Airborne Metals in Grass and Depositions,” Chemos- phere, Vol. 33, No. 11, 1996, pp. 2101-2111. doi:10.1016/0045-6535(96)00301-3
[11] United States Environmental Protection Agency, “National Primary Drinking Water Standards,” USEPA Office of Water, Washington DC, 1999, Doc. 810-F-94-001.
[12] M. O. Andreae and P. N. Froelich, “Arsenic, Antimony, and Germanium Biogeochemistry in the Baltic Sea,” Tellus, Vol. 36B, 1984, pp. 101-117. doi:10.1111/j.1600-0889.1984.tb00232.x
[13] G. A. Cutter, “Dissolved Asenic and Antimony in Black sea,” Deep-Sea Research. Vol. 38, Suppl. 2, 1991, pp. S825-S843. doi:10.1016/S0198-0149(10)80011-1
[14] G. A. Cutter and L. S. Cutter, A. M. Featherstone and S. E. Lohrenz, “Antimony and Arsenic Biogeochemistry in the Western Atlantic Ocean,” Deep-Sea Research: Part II, Vol. 48, No. 13, 2001, pp. 2895-2915.
[15] Takayanagi and D. Cossa, “Vertical Distributions of Sb(III) and Sb(V) in Pavin Lake, France,” Water Re- search, Vol. 31, No. 3, 1997, pp. 671-674. doi:10.1016/S0043-1354(96)00285-0
[16] H. Gürleyük, V. Van Fleet-Stalder and T. G. Chasteen, “Confirmation of the Biomethylation of Antimony Com- pounds,” Applied Organometalic Chemistry, Vol. 11, 1997, pp. 471-483.
[17] P. Andrewes, W. R. Cullen and E. Polishchuk. “Anti- mony Biomethylation by Scopulariopsis Brevicaulis: Characterization of Intermediates and the Methyl Donor,” Chemosphere, Vol. 41, No. 11, 2000, pp. 1717-1725. doi:10.1016/S0045-6535(00)00063-1
[18] R. Ray, D. Ganguly, C. Chowdhury, M. Dey, S. Das, M. K. Dutta, S. K. Mandal, N. Majumdar, T. K. De, S. K. Mukhopadhyay and T. K. Jana, “Carbon Sequestration and Annual Increase of Carbon Stock in a Mangrove Forest,” Atmospheric Environment, Vol. 45, No. 28, 2011, pp. 5016-5024.
[19] H. Biswas, S. K. Mukhopadhyay, T. K. De, S. Sen and T. K. Jana, “Biogenic Controls on the Air-Water Carbon Dioxide Exchange in the Sundarban Mangrove Environ- ment, Northeast Coast of Bay of Bengal, India,” Limnology & Oceanography, Vol. 49, No.1, 2004, pp. 95-101.
[20] D. Das, G. Samanta, B. K. Mondal, R. T. Chowdhury, C. R. Chanda, P. P. Chowdhury, G. K. Basu and D. chak- raborti, “Arsenic in Ground Water in Six Districts of West Bengal, India,” Environmental Geochemistry and Health, Vol. 18, No. 1, 1996, pp. 5-15. doi:10.1007/BF01757214
[21] S. K. Mandal, M. Dey, D. Ganguly, S. Sen and T. K. Jana, “Biogeochemical Controls of Arsenic Occurrence and Mobility in the Indian Sundarban Mangrove Ecosystem,” Marine Pollution Bulletin, Vol. 58, No. 5, 2009, pp. 652- 657. doi:10.1016/j.marpolbul.2009.01.010
[22] S. K. Mukhopadhyay, H. Biswas, T. K. De and T. K. Jana, “Fluxes of Nutrients From the Tropical River Hooghly at the Land–Ocean Boundary of Sundarbans, NE Coast of Bay of Bengal, India,” Journal of Marine System, Vol. 62, No. 1-2, 2006, pp. 9-21. doi:10.1016/j.jmarsys.2006.03.004
[23] H. D. Schulz, “Quantification of Early Diagenesis: Dis- Solved Constituents in Pore Water and Signals in the Solid Phase,” In: H. D. Schulz and M. Zabel, Eds, Marine Geochemistry, Second Edition, Springer, Germany, 2006, pp. 73-124. doi:10.1007/3-540-32144-6_3
[24] DOE, “Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water,” Version 2, ORNL/CDIAC-74, 1994.
[25] P. E. Keller, S. A. Paulson and L. J. Paulson, “Methods for Biological, Chemical and Physical Analysis in Reser- voirs Techical Report. 5,” Lake Mead Limnological Re- search Centre, University of Nevada, Reno, 1980.
[26] K. Grasshoff, “Determination of Nutrients,” In: K. Grasshoff, M. Ehrhard and K. Kremling, Eds, Determina- tion of salinity and Oxygen, Methods of Seawater Analysis, Verlag Chemie, Weinheim, 1983, pp. 31-72.
[27] APHA, “Standard Methods for the Examination of Water and Waste Water,” American Public Health Association, Washington DC, 1995, pp. 5-15.
[28] C. S. Piper, “Soil and Plant Analysis,” Inter Science Publication, New York, 1950, p. 67.
[29] A. Walky and I. A. Black, “An Examination of the Deg- tiareff Method for Deteming Soil Organic Matter and Pro- posed Modification of the Chromic Acid Titration Me- thod,” Soil Science, Vol. 37, No. 1, 1934, pp. 29-38. doi:10.1097/00010694-193401000-00003
[30] H. Ghatak, S. K. Mukhopadhyay, H. Biswas, S. Sen and T. K. Jana, “Quantitative Study of Co (III) Complexation by Syncvhronous Fluorescence Spectroscopy with Sun- derban Mangrove Habitat Humic Substances,” Indian Journal of Marine Science, Vol. 37, 2002, pp. 136-140.
[31] M. Yamamoto, M. Yasuda and Y. Yamamoto, “Hydride- generation Atomic Absorbtion Spectrometry Coupled with Flow Injection Analysis,” Analytical Chemistry, Vol. 57, No. 3, 1985, pp. 1375-1382. doi:10.1021/ac00284a045
[32] D. H. Loring and R. T. T. Rantala, “Manual for the Geochemical Analysis of Marine Sediment and Suspended Particulate Matter,” Earth Science Review, Vol. 32, No. 4, 1992, pp. 235-283. doi:10.1016/0012-8252(92)90001-A
[33] R. S. Barman, D. L. Johnson, C. C. Foreback, J. M. Ammous and J. L. Bricker, Analytical Chemistry, Vol. 49, No. 4, 1977, pp. 621-625. doi:10.1021/ac50012a029
[34] A. Lerman, “Geochemical Processes. Water and Sedi- ment Environments,” John Wiley and Sons, Hoboken, 1979, p. 343.
[35] H. Biswas, M. Dey, D. Ganguly, T. K. De, S. Ghosh and T. K. Jana, “Comparative Analysis of Phytoplankton Composition and Abundance over a Two-Decade Period at the Land-Ocean Boundary of a Tropical Mangrove Ecosystem,” Esuaries and Coasts, Vol. 33, No. 2, 2010, pp. 384-394. doi:10.1007/s12237-009-9193-5
[36] H. A. Sloot.Van der, D. Hoede and J. Wijkstra,“Trace Oxyanioins and Their Behaviour in the River Porong and Solo, Java Sea & the Adjacent Indian Ocean,” Netherland Journal of Sea Research, Vol. 23, No. 4, 1989, pp. 379- 386.
[37] C. Migon and C. Mori, “Arsenic and Antimony Release from Sediments in a Mediterranean Estuary,” Hydrobiologia, Vol. 392, No. 1, 1999, pp. 81-88. doi:10.1023/A:1003561609548
[38] J. T. Byrd, “Comparative Geochemistries of Arsenic and Antimony in Rivers and Estuaries,” Science of Total Environment, Vol. 97, No. 8, 1990, pp. 301-314. doi:10.1016/0048-9697(90)90247-R
[39] C. M. Berg, G. van den, S. H. Khan, P. J. Daly, J. P. Riley and D. R. Turner, “An Electrochemical Study of Ni, Sb, Se, Sn, U and V in the Estuary of the Tamar,” Estuararies and Coastal Shelf Science, Vol. 33, No. 3, 1991, pp. 309- 322.
[40] G. van den and C. M. Berg, “Complex Formation and the Chemistry of Selected Trace Elements: Coastal and Estuarine Research Federation Stable URL,” Estuaries, Vol. 16, No. 3A, 1993, pp. 512-520.
[41] A. A. Benson and R. A. Cooney, “Antimony Metabolites in Marine Algae,” In: P. J. Craig and G. F. Longmans, Eds., Organometallic Compounds in the Environment. Principles and Reactions, Harlow, 1988, pp. 135-137.
[42] S. Maeda, H. Fukuyama, E. Yokoyama, T. Kuroiwa, A. Ohki and K. Naka, “Bioaccumulation of Antimony by Chlorella Vulgaris and the Association Mode of Anti- mony in the Cell,” Applied Organometalic Chemistry, Vol. 11, 1997, pp. 393-396. doi:10.1002/(SICI)1099-0739(199705)11:5<393::AID-AOC593>3.0.CO;2-7
[43] S. Maeda and A.Ohki, “Bioaccumulation and Biotrans- formation of Arsenic, Antimony and Bismuth Compounds by Freshwater Algae.” In: Y.-S. Wong and N. F. Y. Tam, Eds., Wastewater Treatment with Algae, Springer- Verlag and Landes Biosciences, Berlin, 1998, pp. 73-92.
[44] G. A. Cutter and L. S. Cutter, “Biogeochemistry of Arsenic and Antimony in the North Pacific Ocean,” Geochemistry Geophysics Geosystem, Vol. 7, Q05M08, 2006, 12 Pages.
[45] S. Hinzmann, “Mineralogie, Geochemie und Okologie des Quecksilbers in historischen Bergbaugebieten von Rheinland-Pfalz, ” Thesis, Geowissenschaften Johannes Gutenberg University, Mainz, 1991.
[46] A. Neuhaus, “Erfassung und Quanti?zierung von Quecksilber-, Arsen- und Antimonverbindungen im Bereich Boden- P-anze eines historischen Bergbaugebietes im Nordpfalzer Bergland,” Thesis, Johannes Gutenberg University, Geowissenschaften, Mainz, 1994.
[47] T.-L. Deng, Y.-W. Chen and N Belzile, “Antimony Speciation at Ultra Trace Levels Using Hydride Genera- tion Atomic Fluorescence Spectrometry and 8-Hydroxy- quinoline as an Efficient Masking Agent,” Analytica Chimica Acta, Vol. 432, No. 2, 2001, pp. 293-302. doi:10.1016/S0003-2670(00)01387-8
[48] Y. W. Chen, T. L Deng, M. Filella and N. Belzile, “Distribution and Early Diagenesis of Antimony Species in Sediments and Porewaters of Freshwater Lakes,” Environmental Science & Technology, Vol. 37, 2003, pp. 1163-1168. doi:10.1021/es025931k
[49] J. Buschmann and L Sigg, “Antimony(III) Binding to Humic Substances: Influence of pH and Type of Humic Acid,” Environmental Science & Technology, Vol. 38, 2004, pp. 4535-4541. doi:10.1021/es049901o
[50] S. Steely, D. Amarasiriwardena and B. S. Xing, “An Investigation of Inorganic Antimony Species and Antimony Associated with Soil Humic Acid Molar Mass Fractions in Contaminated Soils,” Environmental Pollution, Vol. 148, 2007, pp. 590-598. doi:10.1016/j.envpol.2006.11.031

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.