A new size and shape controlling method for producing calcium alginate beads with immobilized proteins

Abstract

A method for producing size- and shape-con-trolled calcium alginate beads with immobilized proteins was developed. Unlike previous cal-cium alginate bead production methods, pro-tein-immobilized alginate beads with uniform shape and sizes less then 20 micrometers in diameter could successfully be produced by using sonic vibration. BSA and FITC-conjugated anti-BSA antibodies were used to confirm pro-tein immobilization in the alginate beads. Pro-tein diffusion from the beads could be reduced to less than 10% by cross-linking the proteins to the alginate with 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC) and N-hydroxysul-fosuccinimide (NHSS). The calcium alginate beads could also be arranged freely on a slide glass by using a femtosecond laser.

Share and Cite:

Zhou, Y. , Kajiyama, S. , Masuhara, H. , Hosokawa, Y. , Kaji, T. and Fukui, K. (2009) A new size and shape controlling method for producing calcium alginate beads with immobilized proteins. Journal of Biomedical Science and Engineering, 2, 287-293. doi: 10.4236/jbise.2009.25043.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mizukami, A., Nagamori, E., Takakura, Y., Matsunaga, S., Kaneko, Y., Kajiyama, S., Harashima, S., Kobayashi, A., and Fukui, K., (2003) Transformation of yeast using calcium algi-nate microbeads with surface-immobilized chromosomal DNA, Biotechniq., 35, 734–736, 738–740.
[2] Liu, H., Kawabe, A., Matsunaga, S., Murakawa, T., Mizukami, A., Yanagisawa, M., Nagamori, E., Harashima, S., Kobayashi, A., and Fukui, K., (2004) Obtaining transgenic plants using the calcium alginate beads method, J. Plant Res., 117, 95–99.
[3] Sone, T., Nagamori, E., Ikeuchi, T., Mizukami, A., Takakura, Y., Kajiyama, S., Fukusaki, E., Harashima, S., Kobayashi, A., and Fukui K., (2002) A novel gene delivery system in plants with calcium alginate micro-beads, J. Biosci. Bioeng., 94, 87–91.
[4] Higashi, T., Nagamori, E., Sone, T., Matsunaga, S. and Fukui, K. (2004) A novel transfection method for mammalian cells using calcium alginate microbeads, J. Biosci. Bioeng., 97, 191–195.
[5] Gray, C. J. and Dowsett, J., (1988) Retention of insulin in alginate gel beads, Biotech. Bioeng., 31, 607–612.
[6] Ko, C., Dixit, V., Shaw, W., and Gitnick, G., (1995) In vitro slow release profile of endothelial cell growth factor immobi-lized within calcium alginate microbeads, Artif. Cells Blood Substit Immobil. Biotechnol., 23, 143– 151.
[7] Smidsr?d, O. and Skj?k-Braek, G., (1990) Alginate as immobi-lization matrix for cells, Trends Biotechnol., 8, 71–78.
[8] Puolakkainen, P. A., Ranchalis, J. E., Gombotz, W. R., Hoff-man, A. S., Mumper, R. J., and Twardzik, D. R., (1994) Novel delivery system for inducing quiescence in intestinal stem cells in rats by transforming growth factor beta 1, Gastroenterology, 107, 1319–1326.
[9] Singh, O. N. and Burgess, J., (1989) Characterization of albu-min-alginic acid complex coacervation, J. Pharm. Pharmacol., 41, 670–673.
[10] Robitaille, R., Pariseau, J. F., Leblond, F. A., Lamoureux, M., Lepage, Y., and Hallé, J. P., (1999) Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. III. Biocom-patibility of smaller versus standard microcapsules, J. Biomed. Mater. Res., 44, 116–120.
[11] Poncelet, D. and Neufeld R. J., (1989) Shear breakage of nylon membrane microcapsules in a turbine reactor, Biotechnol. Bioeng., 5, 95–103.
[12] Sakai, S., Ono, T., Ijima, H., and Kawakami, K., (2000) Syn-thesis and transport characterization of alginate/ aminopro-pyl-silicate/alginate microcapsule: application to bioartificial pancreas, Biomater., 22, 2827–2834.
[13] Srivastava, R. and McShane, M. J., (2005) Application of self-assembled ultra-thin film coatings to stabilize macro-molecule encapsulation in alginate microspheres, J. Microen-capsul., 22, 397–411.
[14] Wang, S. B., Chen, A. Z., Weng, L. J., Chen, M. Y., and Xie, X. L., (2004) Effect of drug-loading methods on drug load, en-capsulation efficiency and release properties of algi-nate/poly-L-arginine/chitosan ternary complex microcapsules, Macromol. Biosci., 4, 27–30.
[15] Timkovich, R., (1997) Detection of the stable addition of car-bodiimide to proteins, Anal. Biochem., 179, 135–143.
[16] Grabarek, Z. and Gergely, J., (1990) Zero-length cross- linking procedure with the use of active esters, Anal. Biochem, 185, 131–135.
[17] Strand, B. L., G?ser?d, O., Kulseng, B., Espevik, T., and Skj?k-Baek, G., (2002). Alginate-polylysine-alginate micro-capsules: effect of size reduction on capsule properties, J. Mi-croencapsul., 19, 615–30.
[18] Chicheportiche, D. and Reach, G., (1988) In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules, Diabetologia., 31, 54–57.
[19] Hurteaux, R., Edwards-Lévy, F., Laurent-Maquin, D., and Lévy, M. C., (2005) Coating alginate microspheres with a serum albumin-alginate membrane: application to the encapsulation of a peptide, Eur. J. Pharm. Sci., 24, 187–197.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.