Scientific Research

An Academic Publisher

On Polynomials Solutions of Quadratic Diophantine Equations ()

**Author(s)**Leave a comment

Let

*P*:=*P*(*t*) be a polynomial in Z[*X*]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation*E*:*X*^{2}–(*P*^{2}–*P*)*Y*^{2}–(4*P*^{2}–2)*X*+(4*P*^{2}–4*P*)*Y*=0. We also obtain some formulas and recurrence relations on the polynomial solution (*X*_{n},*Y*_{n}) of*E*Cite this paper

A. Chandoul, "On Polynomials Solutions of Quadratic Diophantine Equations,"

*Advances in Pure Mathematics*, Vol. 1 No. 4, 2011, pp. 155-159. doi: 10.4236/apm.2011.14028.Conflicts of Interest

The authors declare no conflicts of interest.

[1] | I. Niven, H. S. Zuckerman and H. L. Montgomery, “An Introduction to the Theory of Numbers,” 5th Edition, Ox-ford University Press, Oxford, 1991. |

[2] | A. Tekcan, “The Pell Equation ,” Applied Mathematical Sciences, Vol. 1, No. 8, 2007, pp. 363-369. |

[3] | P. Kaplan and K. S Williams, “Pell’s Equation and Continued Fractions,” Journal of Num-ber Theory, Vol. 23, No. 2, 1986, pp. 169-182. doi:10.1016/0022-314X(86)90087-9 |

[4] | K. Matthews, “The Diophantine Equation ,” Expositiones Mathematicae, Vol. 18, 2000, pp. 323-331. |

[5] | R. A. Mollin, A. J Poorten and H. C. Williams, “Halfway to a Solution of ,” Journal de Theorie des Nombres Bordeaux, Vol. 6, No. 2, 1994, pp. 421-457. |

[6] | P. Stevenhagen, “A Density Conjecture for the Negative Pell Equation, Computational Algebra and Number Theory,” Math. Appl. Vol. 325, 1992, pp. 187-200. |

[7] | A. Chandoul, “The Pell Equation ,” Research Journal of Pure Algebra, Vol. 1, No. 2, 2011, pp. 11-15. |

[8] | A. S. Shabani, “The Proof of Two Conjectures Related to Pell’s Equation ,” International Journal of Computational and Mathematical Sciences, Vol. 2, No. 1, 2008, pp. 24-27. |

[9] | A. Chandoul, “The Pell Equation ,” Advances in Pure Mathematics, Vol. 1, No. 2, 2011, pp. 16-22. doi:10.4236/apm.2011.12005 |

[10] | A. Dubickas and J. Steuding, “The Polynomial Pell Equation,” Elemente der Mathematik, Vol. 59, No. 4, 2004, pp. 133-143. doi:10.1007/s00017-004-0214-7 |

[11] | A. Tekcan, “Quadratic Diophantine Equation , Bulletin of Malay-sian Mathematical Society, Vol. 33, No. 2, 2010, pp. 273-280. |

[12] | A. Chandoul, “On Quadratic Diophantine Equation ,” International Mathematical Forum, Vol. 6, No. 36, 2011, pp. 1777-1782. |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.