Share This Article:

Comparison of Tongue and Lip Trills with Phonation of the Sustained Vowel /ε/ Regarding the Periodicity of the Electroglottographic Waveform and the Amplitude of the Electroglottographic Signal

Full-Text HTML XML Download Download as PDF (Size:2932KB) PP. 226-238
DOI: 10.4236/oja.2015.54018    3,486 Downloads   3,993 Views   Citations

ABSTRACT

Aim: The aim is to compare the vocal fold vibration seen during lip and tongue trills with that seen during phonation of the sustained vowel /ε/, in terms of the periodicity of the EGG waveform and the amplitude of the EGG signal, in professional voice users. Study design: This was a quasi-experimental study. Methods: We used electroglottography (EGG) to compare the vocal fold vibration seen during tongue and lip trills with that seen during phonation of the sustained vowel /ε/, in terms of the EGG waveform periodicity and signal amplitude, in 10 classically trained, professional singers. The participants produced the sustained vowel /ε/ and performed tongue and lip trills at the same frequency and intensity. The periodicity of the waveform and the amplitude of the signal were visually analyzed by three blinded, experienced readers. To confirm the visual analysis results, we measured the jitter and shimmer of the signal and the frequency of variation in vocal fold vibration during the trill exercises. Results: The EGG waveform was classified as periodic for the sustained vowel phonation task and as quasi-periodic for the trill exercises, the vibration pattern repeating at approximately 24 Hz. Conclusion: The vibration of the vocal folds was modified according to the supraglottic movement in trills exercises.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Cordeiro, G. , Montagnoli, A. , Ubrig, M. , Menezes, M. and Tsuji, D. (2015) Comparison of Tongue and Lip Trills with Phonation of the Sustained Vowel /ε/ Regarding the Periodicity of the Electroglottographic Waveform and the Amplitude of the Electroglottographic Signal. Open Journal of Acoustics, 5, 226-238. doi: 10.4236/oja.2015.54018.

References

[1] Warren, D.W., Allen, G. and King, H.A. (1984) Physiologic and Perceptual Effects of Induced Anterior Open Bite. Folia Phoniatrica et Logopaedica, 36, 164-173.
http://dx.doi.org/10.1159/000265736
[2] Warren, D.W., Rochet, A.P., Dalston, R.M. and, Mayo, R. (1992) Controlling Changes in Vocal Tract Resistance. Journal of the Acoustical Society of America, 91, 2947-253.
http://dx.doi.org/10.1121/1.402930
[3] Titze, I.R. (2006) Voice Training and Therapy with a Semi-Occluded Vocal Tract: Rationale and Scientific Underpinnings. Journal of Speech Language and Hearing Research, 49, 448-459.
http://dx.doi.org/10.1044/1092-4388(2006/035)
[4] Story, B.H., Laukkanen, A.M. and, Titze, I.R. (2000) Acoustic Impedance of an Artificially Lengthened and Constricted Vocal Tract. Journal of Voice, 14, 455-469.
http://dx.doi.org/10.1016/S0892-1997(00)80003-X
[5] Gaskill, C.S. and Erickson, M.L. (2008) The Effect of a Voiced Lip Trill on Estimated Glottal Closed Quotient. Journal of Voice, 22, 634-643.
http://dx.doi.org/10.1016/j.jvoice.2007.03.012
[6] McGowan, R.S. (1992) Tongue-Tip Trills and Vocal-Tract Wall Compliance. Journal of the Acoustical Society of America, 91, 2903-2910.
http://dx.doi.org/10.1121/1.402927
[7] Behlau, M., Rodrigues, S., Azevedo, R. and Gonçalves MI, P.P. (1997) Avaliação e terapia de voz. In: Lopes-Filho, O., Ed., Tratado de Fonoaudiologia, Rocca, São Paulo, 607-658.
[8] Behlau, M.M.G., Feijo, D. and Pontes, P. (12001) Avaliação de Voz. In: MS, B., Ed., A voz do Especialista, 85-275.
[9] RT S (1991) Professional Voice: The Science and Art of Clinical Care. Raven Press, New York.
[10] Speyer, R. (2008) Effects of Voice Therapy: A Systematic Review. Journal of Voice, 22, 565-580.
http://dx.doi.org/10.1016/j.jvoice.2006.10.005
[11] Pinho, S.M. (2001) Terapia Vocal. In: Pinho, S.M., Ed., Tópicos em Voz, Guanabara-Koogan, Rio de Janeiro.
[12] Pinho, S.M. (2003) Fundamentos em fonoaudiologia: Tratando os distúrbios da voz. Guanabara-Koogan, Rio de Janeiro.
[13] Pinho, S. and Pontes, P. (2006) Desvendando os segredos da voz: Músculos intrínsecos da laringe e dinamica vocal. Revinter, Rio de Janeiro.
[14] Scarpel, R.D. and Pinho, S.M. (2001) Aquecimento e desaquecimento vocal. In: Pinho, S.M., Ed., Tópicos em Voz, Guanabara-Koogan, Rio de Janeiro.
[15] Maniecka-Aleksandrowicz, B., Domeracka-Kolodziej, A., Rózak-Komorowska, A. and Szeptycka-Adamus, A. (2006) Management and Therapy in Functional Aphonia: Analysis of 500 Cases. Otolaryngology Journals, 60, 191-197.
[16] Rodrigues, M. (2001) Estudo do exercício de vibração sonorizada de língua nas laringectomias frontolaterais. PUC, São Paulo.
[17] Schwarz, K. and Cielo, C.A. (2009) Vocal and Laryngeal Modifications Produced by the Sonorous Tongue Vibration Technique. Pró-Fono, 21, 161-166.
http://dx.doi.org/10.1590/S0104-56872009000200013
[18] Rodrigues, S. (1995) Análise múltipla do efeito da técnica de vibração sonorizada de língua em indivíduos adultos sem queixa vocal. Universidade Federal de São Paulo, São Paulo.
[19] Bueno, T. (2006) Técnica de vibração sonorizada de língua: aspectos do aprendizado, dos efeitos acústicos e das imagens do trato vocal e da face. PUC, São Paulo.
[20] Cordeiro, G.F. (2010) Análise comparativa da amplitude de vibração das pregas vocais e do coeficiente de contato durante a emissão da vogal /ε/ prolongada e vibração sonorizada de lábios e língua. Universidade de São Paulo, São Paulo.
[21] Hamdan, A.L., Nassar, J., Al Zaghal, Z., El-Khoury, E., Bsat, M. and Tabri, D. (2012) Glottal Contact Quotient in Mediterranean Tongue Trill. Journal of Voice, 26, 669.e11-669.e15.
http://dx.doi.org/10.1016/j.jvoice.2011.07.008
[22] Cordeiro, G.F., Montagnoli, A.N., Nemr, N.K., Menezes, M.H. and Tsuji, D.H. (2012) Comparative Analysis of the Closed Quotient for Lip and Tongue Trills in Relation to the Sustained Vowel /ε/. Journal of Voice, 26, e17-e22.
http://dx.doi.org/10.1016/j.jvoice.2010.07.004
[23] Moisik, S.R., Esling, J.H. and Crevier-Buchman, L. (2010) A High-Speed Laryngoscopic Investigation of Aryepiglottic Trilling. The Journal of the Acoustical Society of America, 127, 1548-1558.
http://dx.doi.org/10.1121/1.3299203
[24] Vieira, M.N., McInnes, F.R. and Jack, M.A. (1997) Comparative Assessment of Electroglottographic and Acoustic Measures of Jitter in Pathological Voices. Journal of Speech Language and Hearing Research, 40, 170-182.
http://dx.doi.org/10.1044/jslhr.4001.170
[25] Pinho, S.M. (2003) Fundamentos em fonoaudiologia: Tratando os distúrbios da voz. Guanabara-Koogan, Rio de Janeiro.
[26] Titze, I.R. (1988) The Physics of Small-Amplitude Oscillation of the Vocal Folds. The Journal of the Acoustical Society of America, 83, 1536-1552.
http://dx.doi.org/10.1121/1.395910
[27] Fisher, K.V. and Swank, P.R. (1997) Estimating Phonation Threshold Pressure. Journal of Speech Language and Hearing Research, 40, 1122-1129.
http://dx.doi.org/10.1044/jslhr.4005.1122
[28] Titze, I.R. (1992) Phonation Threshold Pressure: A Missing Link in Glottal Aerodynamics. The Journal of the Acoustical Society of America, 91, 2926-2935.
http://dx.doi.org/10.1121/1.402928
[29] Jiang, J.J., Zhang, Y. and Stern, J. (2001) Modeling of Chaotic Vibrations in Symmetric Vocal Folds. The Journal of the Acoustical Society of America, 110, 2120-2128.
http://dx.doi.org/10.1121/1.1395596
[30] Erath, B.D., Peterson, S.D., Zañartu, M., Wodicka, G.R. and Plesniak, M.W. (2011) A Theoretical Model of the Pressure Field Arising from Asymmetric Intraglottal Flows Applied to a Two-Mass Model of the Vocal Folds. The Journal of the Acoustical Society of America, 130, 389-403.
http://dx.doi.org/10.1121/1.3586785
[31] Alipour, F. and Scherer, R.C. (2000) Vocal Fold Bulging Effects on Phonation Using a Biophysical Computer Model. Journal of Voice, 14, 470-483.
http://dx.doi.org/10.1016/S0892-1997(00)80004-1
[32] Alipour, F. and Scherer, R.C. (2000) Dynamic Glottal Pressures in an Excised Hemilarynx Model. Journal of Voice, 14, 443-454.
http://dx.doi.org/10.1016/S0892-1997(00)80002-8
[33] Alipour, F., Finnegan, E.M. and Scherer, R.C. (2009) Aerodynamic and Acoustic Effects of Abrupt Frequency Changes in Excised Larynges. Journal of Speech Language and Hearing Research, 52, 465-481.
http://dx.doi.org/10.1044/1092-4388(2008/07-0212)
[34] Tokuda, I.T., Horacek, J., Svec, J.G. and Herzel, H. (2007) Comparison of Biomechanical Modeling of Register Transitions and Voice Instabilities with Excised Larynx Experiments. The Journal of the Acoustical Society of America, 122, 519-531.
http://dx.doi.org/10.1121/1.2741210
[35] Nomura, H. and Funada, T. (2006) Numerical Simulation of Unsteady Flow through the Rigid Glottis. Acoustical Science and Technology, 27, 154-162.
http://dx.doi.org/10.1250/ast.27.154
[36] Tao, C., Zhang, Y., Hottinger, D.G. and Jiang, J.J. (2007) Asymmetric Airflow and Vibration Induced by the Coanda Effect in a Symmetric Model of the Vocal Folds. The Journal of the Acoustical Society of America, 122, 2270-2278.
http://dx.doi.org/10.1121/1.2773960
[37] Becker, S., Kniesburges, S., Muller, S., Delgado, A., Link, G., Kaltenbacher, M., et al. (2009) Flow-Structure-Acoustic Interaction in a Human Voice Model. The Journal of the Acoustical Society of America, 125, 1351-1361.
http://dx.doi.org/10.1121/1.3068444
[38] Khosla, S., Murugappan, S. and Gutmark, E. (2008) What Can Vortices Tell Us about Vocal Fold Vibration and Voice Production. Current Opinion in Otolaryngology & Head and Neck Surgery, 16, 183-187.
http://dx.doi.org/10.1097/MOO.0b013e3282ff5fc5
[39] Triep, M. and Brücker, C. (2010) Three-Dimensional Nature of the Glottal Jet. The Journal of the Acoustical Society of America, 127, 1537-1547.
http://dx.doi.org/10.1121/1.3299202
[40] Kirmse, C., Triep, M., Brücker, C., Döllinger, M. and Stingl, M. (2010) Experimental Flow Study of Modeled Regular and Irregular Glottal Closure Types. Logopedics Phoniatrics Vocology, 35, 45-50.
http://dx.doi.org/10.3109/14015431003667652
[41] Zheng, X., Mittal, R., Xue, Q. and Bielamowicz, S. (2011) Direct-Numerical Simulation of the Glottal Jet and Vocal-Fold Dynamics in a Three-Dimensional Laryngeal Model. The Journal of the Acoustical Society of America, 130, 404-415.
http://dx.doi.org/10.1121/1.3592216
[42] Zheng, X., Mittal, R. and Bielamowicz, S. (2011) A Computational Study of Asymmetric Glottal Jet Deflection during Phonation. The Journal of the Acoustical Society of America, 129, 2133-2143.
http://dx.doi.org/10.1121/1.3544490
[43] Okuno, E., Caldas, I.L. and Chow, C. (1982) Física para ciências biológicas e biomédicas. Editora Harbra, São Paulo.
[44] Hofmans, G.C., Groot, G., Ranucci, M., Graziani, G. and Hirschberg, A. (2003) Unsteady Flow through in Vitro Models of the Glottis. The Journal of the Acoustical Society of America, 113, 1658-1675.
http://dx.doi.org/10.1121/1.1547459
[45] Oliveira, P.M. (2008) Sustentação aerodinamica: O mecanismo físico [Internet].
http://dited.bn.pt/31619/2606/3166.pdf
[46] Alipour, F. and Scherer, R.C. (2004) Flow Separation in a Computational Oscillating Vocal Fold Model. The Journal of the Acoustical Society of America, 116, 1710-1719.
http://dx.doi.org/10.1121/1.1779274
[47] Sciamarella, D. and Quere, P.L. (2008) Solving for Unsteady Airflow in a Glottal Model with Immersed Moving Boundaries. European Journal of Mechanics B/Fluids, 128, 42-53.
http://dx.doi.org/10.1016/j.euromechflu.2007.06.004
[48] Mihaescu, M., Khosla, S.M., Murugappan, S. and Gutmark, E.J. (2010) Unsteady Laryngeal Airflow Simulations of the Intra-Glottal Vortical Structures. The Journal of the Acoustical Society of America, 127, 435-444.
http://dx.doi.org/10.1121/1.3271276
[49] Dejonckere, P.H. (1986) Acoustic Analysis of Voice Production. Production Trial from a Clinical Perspective. Acta Oto-Rhino-Laryngologica Belgica, 40, 377-385.
[50] Haji, T., Horiguchi, S., Baer, T. and Gould, W.J. (1986) Frequency and Amplitude Perturbation Analysis of Electroglottograph during Sustained Phonation. The Journal of the Acoustical Society of America, 80, 58-62.
http://dx.doi.org/10.1121/1.394083
[51] Titze, I.R. (2008) Nonlinear Source-Filter Coupling in Phonation: Theory. The Journal of the Acoustical Society of America, 123, 2733-2749.
http://dx.doi.org/10.1121/1.2832337
[52] Titze, I., Riede, T. and Popolo, P. (2008) Nonlinear Source-Filter Coupling in Phonation: Vocal Exercises. The Journal of the Acoustical Society of America, 123, 1902-1915.
http://dx.doi.org/10.1121/1.2832339
[53] Pinho, S.M. (2001) Terapia Vocal. In: Pinho, S.M., Ed., Tópicos em Voz, Guanabara-Koogan, Rio de Janeiro, 1-18.
[54] Delisa, J.A. (1992) Medicina de reabilitação: Princípios e prática. Manole, São Paulo.
[55] Macardle, W.D., Kach, F.I. and Katch, V.L. (1985) Fisiologia do exercício: Energia, nutrição e desempenho humano. Guanabara, Rio de Janeiro.
[56] Titze, I.R. and Story, B.H. (1997) Acoustic Interactions of the Voice Source with the Lower Vocal Tract. The Journal of the Acoustical Society of America, 101, 2234-2243.
http://dx.doi.org/10.1121/1.418246
[57] Titze, I.R. and Laukkanen, A.M. (2007) Can Vocal Economy in Phonation Be Increased with an Artificially Lengthened Vocal Tract? A Computer Modeling Study. Logopedics Phoniatrics Vocology, 32, 147-156.
http://dx.doi.org/10.1080/14015430701439765
[58] Laukkanen, A.M., Titze, I.R., Hoffman, H. and Finnegan, E. (2008) Effects of a Semioccluded Vocal Tract on Laryngeal Muscle Activity and Glottal Adduction in a Single Female Subject. Folia Phoniatrica et Logopaedica, 60, 298-311.
http://dx.doi.org/10.1159/000170080
[59] Titze, I.R. (2009) Phonation Threshold Pressure Measurement with a Semi-Occluded Vocal Tract. Journal of Speech Language and Hearing Research, 52, 1062-1072.
http://dx.doi.org/10.1044/1092-4388(2009/08-0110)
[60] Menezes, M.H., Ubrig-Zancanella, M.T., Cunha, M.G., Cordeiro, G.F., Nemr, K. and Tsuji, D.H. (2011) The Relationship between Tongue Trill Performance Duration and Vocal Changes in Dysphonic Women. Journal of Voice, 25, e167-e175.
http://dx.doi.org/10.1016/j.jvoice.2010.03.009
[61] Hirsch, M.W., Samale, S. and Devaney, R.L. (2004) Differential Equations, Dynamical Systems—An Introduction to Chaos. 2nd Edition, Elsevier Academic Press, New York.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.