Share This Article:

5D World-Universe Model. Neutrinos. The World

Full-Text HTML XML Download Download as PDF (Size:420KB) PP. 1-18
DOI: 10.4236/jhepgc.2016.21001    2,564 Downloads   4,376 Views   Citations


In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density; Newtonian parameter of gravitation and Hubble’s parameter; temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation; Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos; proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Netchitailo, V. (2016) 5D World-Universe Model. Neutrinos. The World. Journal of High Energy Physics, Gravitation and Cosmology, 2, 1-18. doi: 10.4236/jhepgc.2016.21001.


[1] Netchitailo, V.S. (2015) 5D World-Universe Model. Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25-34.
[2] Netchitailo, V.S. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71.
[3] Pontecorvo B. and Smorodinsky, Y. (1962) The Neutrino and the Density of Matter in the Universe. Soviet Physics— JETP, 14, 173.
[4] Kajita, T. (1998) Atmospheric neutrino results from Super-Kamiokande and Kamiokande—Evidence for νμ oscillations. arXiv: 9810001.
[5] Sanchez, M. (2003) Oscillation Analysis of Atmospheric Neutrinos in Soudan 2. PhD Thesis, Tufts University, Medford/Somerville.
[6] Kaus, P. and Meshkov, S. (2003) Neutrino Mass Matrix and Hierarchy. AIP Conference Proceedings, 672, 117.
[7] Dermisek, R. (2004) Neutrino Masses and Mixing, Quark-Lepton Symmetry and Strong Right-Handed Neutrino Hierarchy. Physical Review D, 70, Article ID: 073016.
[8] Gonzalez-Garcia, M.C. and Pena-Garay, C. (2003) Three-Neutrino Mixing after the First Results from K2K and KamLAND. Physical Review D, 68, Article ID: 093003.
[9] Maltoni, M., Schwetz, T., Tortola, M.A. and Valle, J.W.F. (2003) Status of Three-Neutrino Oscillations after the SNO- Salt Data. Physical Review D, 68, Article ID: 113010.
[10] Battye, R.A. and Moss, A. (2014) Evidence for Massive Neutrinos from CMB and Lensing Observations. arXiv: 1308.5870.
[11] Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics. Third Edition, Part 1: Volume 5. Butterworth-Heinemann, Oxford.
[12] NASA’s Planck Project Office (2013) Planck Mission Brings Universe into Sharp Focus.
[13] Hauser, M.G., Gillett, F.C., Low, F.J., Gautier, T.N., Beichman, C.A., Aumann, H.H., Neugebauer, G., Baud, B., Boggess, N. and Emerson, J.P. (1984) IRAS Observations of the Diffuse Infrared Background. The Astrophysical Journal, 278, L15-L18.
[14] Low, F.J., Young, E., Beintema, D.A., Gautier, T.N., Beichman, C.A., Aumann, H.H., Gillett, F.C., Neugebauer, G., Boggess, N. and Emerson, J.P. (1984) Infrared Cirrus-New Components of the Extended Infrared Emission. The Astrophysical Journal, 278, L19-L22.
[15] Wang, B. (1991) Integrated Far-Infrared Background from Galaxies. The Astrophysical Journal, 374, 465-474.
[16] Wright, E.L. (2001) Cosmic InfraRed Background Radiation.
[17] Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., ShaFer, R.A. and Wright, E.L. (1996) The Cosmic Microwave Background Spectrum from the Full COBE* FIRAS Data Set. The Astrophysical Journal, 473, 576-587.
[18] Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (1999) Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS. The Astrophysical Journal, 524, 867-886.
[19] Draine, B.T. and Lazarian, A. (1998) Electric Dipole Radiation from Spinning Dust Grains. The Astrophysical Journal, 508, 157-179.
[20] Finkbeiner, D.P. and Schlegel, D.J. (1999) Interstellar Dust Emission as a CMBR Foreground. The Astrophysical Journal, 524, 867-886.
[21] Lagache, G., Abergel, A., Boulanger, F., Désert, F.X. and Puget, J.-L. (1999) First Detection of the Warm Ionized Medium Dust Emission. Implication for the Cosmic Far-Infrared Background. Astronomy and Astrophysics, 344, 322-332.
[22] Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (2000) Detection of a Far IR Excess with DIRBE at 60 and 100 Microns. The Astrophysical Journal, 544, 81-97.
[23] Siegel, P.H. (2002) Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928.
[24] Phillips, T.G. and Keene, J. (1992) Submillimeter Astronomy [Heterodyne Spectroscopy]. Proceedings of the IEEE, 80, 1662-1678.
[25] Dupac, X., et al. (2003) The Complete Submillimeter Spectrum of NGC 891. arXiv: 0305230.
[26] Aguirre, J.E., Bezaire, J.J., Cheng, E.S., Cottingham, D.A., Cordone, S.S., Crawford, T.M., et al. (2003) The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data. The Astrophysical Journal, 596, 273-286.
[27] Pope, A., Scott, D., Dickinson, M., Chary, R.-R., Morrison, G., Borys, C. and Sajina, A. (2006) Using Spitzer to Probe the Nature of Submillimetre Galaxies in GOODS-N. arXiv: 0603409.
[28] Marshall, J.A., Herter, T.L., Armus, L., Charmandaris, V., Spoon, H.W.W., Bernard-Salas, J. and Houck, J.R. (2007) Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting. The Astrophysical Journal, 670, 129-155.
[29] Devlin, M.J., Ade, P.A.R., Aretxaga, I., Bock, J.J., Chapin, E.L., Griffin, M., et al. (2009) Over Half of the Far-Infrared Background Light Comes from Galaxies at z ≥ 1.2. Nature, 458, 737-739.
[30] Chapin, E.L., Chapman, S.C., Coppin, K.E., Devlin, M.J., Dunlop, J.S., Greve, T.R., et al. (2011) A Joint Analysis of BLAST 250-500 um and LABOCA 870 um Observations in the Extended Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 411, 505-549.
[31] Mackenzie, T., Braglia, F.G., Gibb, A.G., Scott, D., Jenness, T., Serjeant, S., et al. (2011) A Pilot Study for the SCUBA-2 “All-Sky” Survey. Monthly Notices of the Royal Astronomical Society, 415, 1950-1960.
[32] Serra, P., Lagache, G., Doré, O., Pullen, A. and White, M. (2014) Cross-Correlation of Cosmic Infrared Background Anisotropies with Large Scale Structures. Astronomy & Astrophysics, 570, A98.
[33] Maurette, M., Cragin, J. and Taylor, S. (1992) Cosmic Dust in 50 KG Blocks of Blue Ice from Cap-Prudhomme and Queen Alexandra Range, Antarctica. Meteoritics, 27, 257.
[34] Saxton, J.M., Knotts, S.F., Turner, G. and Maurette, M. (1992) 40Ar/39Ar Studies of Antarctic Micrometeorites. Meteoritics, 27, 285.
[35] Jackson, A.A. and Zook, H.A. (1991) Dust Particles from Comets and Asteroids: Parent-Daughter Relationships. Abstracts of the Lunar and Planetary Science Conference, 22, 629-630.
[36] Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
[37] Mannheim, P.D. (1978) Parity Violation and the Masslessness of the Neutrino.
[38] Cortina, G.E., et al. (1996) Study of Rare B Decays with the DELPHI Detector at LEP.
[39] Samsonenko, N.V. (2007) Fundamental Interactions and Their Relative Contribution to the Nuclear Reactions at Low Energies. International Conference on Condensed Matter Nuclear Science, 125.
[40] Altmannshofer, W., Buras, A.J., Straub, D.M. and Wick, M. (2009) New Strategies for New Physics Search in B -> K* nu anti-nu, B -> K nu anti-nu and B -> X(s) nu anti-nu Decays. Journal of High Energy Physics, 2009, Article No.: 022.
[41] Straub, D.M. (2010) Supersymmetry, the Flavour Puzzle and Rare B Decays. PhD Thesis, Munich Technical University, Munich.
[42] del Amo Sanchez, P., et al. (2011) Search for the Rare Decay B->K nu nubar. Physical Review D, 82, Article ID: 112002.
[43] Sharafiddinov, R.S. (2011) An Axial Vector Nature of a Neutrino with an Electroweak Mass. Acta Radiologica, 42, 291-293.
[44] Würthwein, F. (2011) Search for Higgs in the Dilepton Dineutrino Final State with CMS. UCSD, San Diego.
[45] Li, X.-Q., Yang, Y.-D. and Yuan, X.-B. (2012) Anomalous tqZ Coupling Effects in Rare B- and K-Meson Decays. Journal of High Energy Physics, 2012, Article No.: 18.
[46] Hoonhout, B. (2014) Higgs Spin Analysis in Collins-Soper Frame Using Opening Angles of Different-Flavour Final State. PhD Thesis, Amsterdam University, Amsterdam.
[47] Hall, D.C. (2014) Discovery and Measurement of the Higgs Boson in the WW Decay Channel. PhD Thesis, University of Oxford, Oxford.
[48] Oussoren, K. (2015) Angular Analysis in HWW. ATLAS Outing 2015.
[49] Sin, S.-J. (1992) Late Time Cosmological Phase Transition and Galactic Halo as Bose-Liquid. arXiv: 9205208.
[50] Robles, V.H. and Matos, M. (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Monthly Notices of the Royal Astronomical Society, 422, 282-289.
[51] Magana, J., and Matos, T. (2012) A Brief Review of the Scalar Field Dark Matter Model. Journal of Physics: Conference Series, 378, Article ID: 012012.
[52] Suarez, A., Robles, V.H. and Matos, T. (2013) A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model. In: González, C.M., Aguilar, J.E.M. and Barrera, L.M.R., Eds., Accelerated Cosmic Expansion, Springer, Berlin, 107-142.
[53] Diez-Tejedor, A., Gonzalez-Morales, A.X. and Profumo, S. (2014) Dwarf Spheroidal Galaxies and Bose-Einstein Condensate Dark Matter. Physical Review D, 90, Article ID: 043517.
[54] Sikivie, P. and Yang, Q. (2009) Bose-Einstein Condensation of Dark Matter Axions. Physical Review Letters, 103, Article ID: 111301.
[55] Erken, O., Sikivie, P., Tam, H. and Yang, Q. (2011) Axion BEC Dark Matter. arXiv: 1111.3976.
[56] Banik, N. and Sikivie, P. (2013) Axions and the Galactic Angular Momentum Distribution. Physical Review D, 88, Article ID: 123517.
[57] Davidson, S. and Elmer, M. (2013) Bose Einstein Condensation of the Classical Axion Field in Cosmology? Journal of Cosmology and Astroparticle Physics, 2013, Article No.: 034.
[58] Li, M.-H. and Li, Z.-B. (2014) Constraints on Bose-Einstein-Condensed Axion Dark Matter from the HI nearby Galaxy Survey Data. Physical Review D, 89, Article ID: 103512.
[59] Morikawa, M. (2004) Structure Formation through Cosmic Bose Einstein Condensation-Unified View of Dark Matter and Energy. 22nd Texas Symposium on Relativistic Astrophysics, Stanford, 13-17 December 2004, 1122.
[60] Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P. (2000) Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates. Physical Review Letters, 85, 4643-4647.
[61] Ueda, M. and Huang, K. (1998) Fate of a Bose-Einstein Condensate with Attractive Interaction. arXiv: 9807359.
[62] Hujeirat, A.A. (2011) On the Viability of Gravitational Bose-Einstein Condensates as Alternatives to Supermassive Black Holes. Monthly Notices of the Royal Astronomical Society, 423, 2893-2900.
[63] Kuhnel, F. and Sundborg, B. (2014) Decay of Graviton Condensates and their Generalizations in Arbitrary Dimensions. Physical Review D, 90, Article ID: 064025.
[64] Hauser, M.G. and Dwek, E. (2001) The Cosmic Infrared Background: Measurements and Implications. Annual Review of Astronomy & Astrophysics, 39, 249-307.
[65] Kashlinsky, A. (2005) Cosmic Infrared Background and Early Galaxy Evolution. Physics Reports, 409, 361-438.
[66] Wesson, P.S. (1983) A New Approach to Scale-Invariant Gravity. Astronomy & Astrophysics, 119, 145-152.
[67] Overduin, J.M. and Wesson, P.S. (1998) Kaluza-Klein Gravity. Physics Reports, 283, 303-380.
[68] Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920.
[69] Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650.
[70] Wolfenstein, L. (1994) Superweak Interactions. Comments on Nuclear and Particle Physics, 21, 275.
[71] Yamaguchi, Y. (1959) Possibility of Super-Weak Interactions and the Stability of Matter. Progress of Theoretical Physics, 22, 373-380.
[72] Kelley, K.F. (1999) Measurement of the CP Violation Parameter . PhD Thesis, MIT, Cambridge, MA.
[73] Bian, B.A., Feng, Z.Q., Li, W.F., Ming, Z.Y., Chen, L.W., Jin, G.M., et al. (2006) Determination of the NN Cross Section, Symmetry Energy, and Studying of Weak Interaction in CSR.
[74] McDonald, A.B. (2003) Neutrino Properties from Measurements using Astrophysical and Terrestrial Sources. arXiv: 0310775.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.