Share This Article:

Hamiltonian Representation of Higher Order Partial Differential Equations with Boundary Energy Flows

Full-Text HTML XML Download Download as PDF (Size:483KB) PP. 1472-1490
DOI: 10.4236/jamp.2015.311174    1,938 Downloads   2,280 Views   Citations
Author(s)    Leave a comment

ABSTRACT

This paper presents a system representation that can be applied to the description of the interaction between systems connected through common boundaries. The systems consist of partial differential equations that are first order with respect to time, but spatially higher order. The representation is derived from the instantaneous multisymplectic Hamiltonian formalism; therefore, it possesses the physical consistency with respect to energy. In the interconnection, particular pairs of control inputs and observing outputs, called port variables, defined on the boundaries are used. The port variables are systematically introduced from the representation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Nishida, G. (2015) Hamiltonian Representation of Higher Order Partial Differential Equations with Boundary Energy Flows. Journal of Applied Mathematics and Physics, 3, 1472-1490. doi: 10.4236/jamp.2015.311174.

References

[1] Abraham, R. and Marsden, J. (2008) Foundations of Mechanics. 2nd Edition, AMS Chelsea Pub., Chelsea.
[2] van der Schaft, A.J. (2000) L2-Gain and Passivity Techniques in Nonlinear Control. 2nd Revised and Enlarged Edition, Springer-Verlag, London.
http://dx.doi.org/10.1007/978-1-4471-0507-7
[3] Duindam, V., Macchelli, A., Stramigioli, S. and Bruyninckx, H., Eds. (2009) Modeling and Control of Complex Physical Systems—The Port-Hamiltonian Approach. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-03196-0
[4] Karnopp, D.C., Margolis, D.L. and Rosenberg, R.C. (2006) System Dynamics, Modeling and Simulation of Mechatronic Systems. 4th Edition, Wiley, Hoboken.
[5] Gotay, M.J. (1991) A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian Formalism. In: Francaviglia, M., Ed., Mechanics, Analysis and Geometry: 200 Years after Lagrange, Elsevier Science Pub. B.V., Amsterdam, 203-235.
http://dx.doi.org/10.1016/B978-0-444-88958-4.50012-4
[6] Gotay, M.J. (1991) A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations II: Space + Time Decomposition. Differential Geometry and Its Applications, 1, 375-390.
http://dx.doi.org/10.1016/0926-2245(91)90014-Z
[7] van der Schaft, A.J. and Maschke, B.M. (2002) Hamiltonian Formulation of Distributed-Parameter Systems with Boundary Energy Flow. Journal of Geometry and Physics, 42, 166-194.
http://dx.doi.org/10.1016/S0393-0440(01)00083-3
[8] Macchelli, A. (2014) Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization, 52, 2422-2448.
http://dx.doi.org/10.1137/130918228
[9] Nishida, G. and Yamakita, M. (2005) Formal Distributed Port-Hamiltonian Representation of Field Equations. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, 12-15 December 2005, 6009-6015.
http://dx.doi.org/10.1109/CDC.2005.1583123
[10] Nishida, G. and Maschke, B. (2012) Implicit Representation for Passivity-Based Boundary Controls. Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non-Linear Control, Bertinoro, 29-31 August 2012, 200-207.
[11] Schöberl, M. and Siuka, A. (2014) Jet Bundle Formulation of Infinite-Dimensional Port-Hamiltonian Systems Using Differential Operators. Automatica, 50, 607-613.
http://dx.doi.org/10.1016/j.automatica.2013.11.035
[12] Nishida, G. and Yamakita, M. (2004) A Higher Order Stokes-Dirac Structure for Distributed-Parameter Port-Hamiltonian Systems. Proceedings of the 2004 American Control Conference, Boston, 30 June-2 July 2004, 5004-5009.
[13] Le Gorrec, Y., Zwart, H. and Maschke, B. (2005) Dirac Structures and Boundary Control Systems Associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization, 44, 1864-1892.
http://dx.doi.org/10.1137/040611677
[14] van der Schaft, A.J. (1998) Implicit Hamiltonian Systems with Symmetry. Reports on Mathematical Physics, 41, 203-221.
http://dx.doi.org/10.1016/S0034-4877(98)80176-6
[15] Dalsmo, M. and van der Schaft, A. (1998) On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization, 37, 54-91.
http://dx.doi.org/10.1137/S0363012996312039
[16] Yoshimura, H. and Marsden, J.E. (2006) Dirac Structures in Lagrangian Mechanics Part I: Implicit Lagrangian Systems. Journal of Geometry and Physics, 57, 133-156.
http://dx.doi.org/10.1016/j.geomphys.2006.02.009
[17] Vankerschaver, J., Yoshimura, H. and Leok, M. (2012) The Hamilton-Pontryagin Principle and Multi-Dirac Structures for Classical Field Theories. Journal of Mathematical Physics, 53, Article ID: 072903.
http://dx.doi.org/10.1063/1.4731481
[18] Courant, T. (1990) Dirac Manifolds. Transactions of the American Mathematical Society, 319, 631-661.
http://dx.doi.org/10.1090/S0002-9947-1990-0998124-1
[19] Dorfman, I. (1993) Dirac Structures and Integrability of Nonlinear Evolution Equations. John Wiley, Chichester.
[20] Nishida, G., Maschke, B. and Ikeura, R. (2015) Boundary Integrability of Multiple Stokes-Dirac Structures. SIAM Journal Control and Optimization, 53, 800-815.
http://dx.doi.org/10.1137/110856058
[21] Nishida, G., Yamakita, M. and Luo, Z. (2007) Virtual Lagrangian Construction Method for Infinite Dimensional Systems with Homotopy Operators. In: Allgüwer, F., Fleming, P., Kokotovic, P., Kurzhanski, A.B., Kwakernaak, H., Rantzer, A., et al., Eds., Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, Lecture Notes in Control and Information Sciences, Vol. 366, Springer, Berlin, 75-86.
http://dx.doi.org/10.1007/978-3-540-73890-9_5
[22] Olver, P.J. (1993) Applications of Lie Groups to Differential Equations. 2nd Edition, Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-4350-2
[23] Anderson, I.M. (1992) Introduction to the Variational Bicomplex. Contemporary Mathematics, 132, 51-73.
http://dx.doi.org/10.1090/conm/132/1188434
[24] Saunders, D.J. (1989) The Geometry of Jet Bundles. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511526411
[25] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (1997) New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific, Singapore.
http://dx.doi.org/10.1142/2199
[26] Tulczyjew, W.M. (1977) The Legendre Transformation. Annales de l’Institut Henri Poincaré (A) Physique Théorique, 27, 101-114.
[27] Olver, P.J. (1995) Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511609565

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.