[1]
|
Seegenschmiedt, M.H. and Vernon, C.C. (1996) A Historical Perspective on Hyperthermia in Oncology. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermo-Radiotherapy and Thermo-Chemiotherapy, Springer, Berlin Heidelberg, 3-46. http://dx.doi.org/10.1007/978-3-642-60938-1_1
|
[2]
|
Roussakow, R. (2013) The History of Hyperthermia Rise and Decline. Conference Papers in Medicine, 2013, Article ID: 428027.
|
[3]
|
Baronzio, G., Jackson, M., Lee, D. and Szasz, A. (2013) Editorial of the Conference of the International Clinical Hyperthermia Society 2012. Conference Papers in Medicine, 2013, Article ID: 690739.
|
[4]
|
Szasz, A. (2013) “Quo Vadis” Oncologic Hyperthermia? Conference Papers in Medicine, 2013, Article ID: 201671.
|
[5]
|
Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Thermal Dosimetry: The Key to Hyperthermia’s Future. International Journal of Hyperthermia, 22, 247-253. http://dx.doi.org/10.1080/02656730600765072
|
[6]
|
von Ardenne, A. and Wehner, H. (2005) Extreme Whole-Body Hyperthermia with Water-Filtered Infrared-A Radiation. Eurekah Bioscience Collection, Oncology, Landes Bioscience.
|
[7]
|
Devrient, W. (1950) überwärmungsbäder. Weber’s Verlag, Berlin.
|
[8]
|
Fieber, H.F. (1957) Unspezifische Abwehrvorgänge, Unspezifische Therapie. Georg Thieme, Stuttgart.
|
[9]
|
Lampert, H. (1948) überwärmung als Heilmittel. Hippokrates, Stuttgart.
|
[10]
|
Schmidt, K.L. (1987) Hyperthermie und Fieber. Hippokrates, Stuttgart.
|
[11]
|
Heckel, M. (1990) Ganzkörperhyperthermie und Fiebertherapie—Grundlagen und Praxis. Hippokrates, Stuttgart.
|
[12]
|
Heckel, M. (1992) Fiebertherapie und Ganzkörper-HT, Bessere Verträglichkeit und Effizienz durch thermoregulatorisch ausgewogene, kombinierte Anwendung beider Verfahren. ThermoMed, No. 14, 19 p.
|
[13]
|
Hildebrandt, B., Drager, J., Kerner, T., Deja, M., Löffel, J., Stroszczynski, C., et al. (2004) Whole-Body Hyperthermia in the Scope of von Ardenne’s Systemic Cancer Multistep Therapy (sCMT) Combined with Chemotherapy in Patients with Metastatic Colorectal Cancer: A Phase I/II Study. International Journal of Hyperthermia, 20, 317-333. http://dx.doi.org/10.1080/02656730310001637316
|
[14]
|
Wust, P., Riess, H. and Hildebrandt, B. (2000) Feasibility and Analysis of Thermal Parameters for the Whole-Body Hyperthermia System IRATHERM. International Journal of Hyperthermia, 4, 325-339.
|
[15]
|
Szasz, A., Szasz, O. and Szasz, N. (2006) Physical Background and Technical Realization of Hyperthermia. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer, Springer Science, Berlin, 27-59. http://dx.doi.org/10.1007/978-0-387-33441-7_3
|
[16]
|
Nishide, O.J.R. (1985) The Role of Magnetic Inductiontechniques for Producing Hyperthermia. In: Anghileri, L.J., Robert, J., Eds., Hyperthermia in Cancer Treatment, Vol. II, CRC Press, Boca Roton, 141-154.
|
[17]
|
Nishide, S.M. and Ueno, S. (1993) A Method of Localized Hyperthermia by Using a Figure-of-Eight Coil and Short-Circuit Rings. Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, 31 October 1993, 1447-1448. http://dx.doi.org/10.1109/IEMBS.1993.979222
|
[18]
|
Jojo, M., Murakami, A., Sato, F., Matsuki, H. and Sato, T. (2001) Consideration of Handy Excitation Apparatus for the Inductive Hyperthermia. IEEE Transactions on Magnetics, 37, 2944-2946. http://dx.doi.org/10.1109/20.951355
|
[19]
|
Dahl, O., Dalene, R. and Schem, B.C. (1999) Status of Clinical Hyperthermia. Acta Oncologica, 38, 863-873. http://dx.doi.org/10.1080/028418699432554
|
[20]
|
Senior, K. (2001) Hyperthermia and Hypoxia for Cancer-Cell Destruction. Lancet Oncology, 2, 524-525. http://dx.doi.org/10.1016/S1470-2045(01)00470-3
|
[21]
|
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., et al. (2002) Hyperthermia in Combined Treatment of Cancer. Lancet Oncology, 3, 487-497. http://dx.doi.org/10.1016/S1470-2045(02)00818-5
|
[22]
|
Szasz, A., Szasz, O. and Szasz, N. (2001) Electro-Hyperthermia: A New Paradigm in Cancer Therapy. Deutsche Zeitschrift für Onkologie, 33, 91-99. http://dx.doi.org/10.1055/s-2001-19447
|
[23]
|
Szasz, A., Szasz, N. and Szasz, O. (2003) Hyperthermie in der Onkologie mit einem historischen Uberblick. Deutsche Zeitschrift für Onkologie, 35, 140-154. http://dx.doi.org/10.1055/s-2003-43178
|
[24]
|
Abe, M., Hiraoka, M., Takahashi, M., Egawa, S., Matsuda, C., Onoyama, Y., et al. (1986) Multi-Institutional Studies on Hyperthermia Using an 8-MHz Radiofrequency Capacitive Heating Device (Thermotron RF-8) in Combination with Radiation for Cancer Therapy. Cancer, 58, 1589-1595. http://dx.doi.org/10.1002/1097-0142(19861015)58:8<1589::AID-CNCR2820580802>3.0.CO;2-B
|
[25]
|
Nagy, G., Meggyeshazi, N. and Szasz, O. (2013) Deep Temperature Measurements in Oncothermia Processes. Conference Papers in Medicine, 2013, Article ID: 685264. http://dx.doi.org/10.1155/2013/685264
|
[26]
|
Vargas, H.I., Dooley, W.C., Gardner, R.A., Gonzalez, K.D., Venegas, R., Heywang-Kobrunner, S.H. and Fenn, A.J. (2004) Focused Microwave Phased Array Thermotherapy for Ablation of Early-Stage Breast Cancer: Results of Thermal Dose Escalation. Annals of Surgical Oncology, 11, 139-146. http://dx.doi.org/10.1245/ASO.2004.03.059
|
[27]
|
Ellis, L.M., Curley, S.A. and Tanabe, K.K. (2004) Radiofrequency Ablation of Cancer. Springer Verlag, New York, Berlin.
|
[28]
|
Goldberg, S.N., Gazelle, G.S., Solbiati, L., Livraghi, T., Tanabe, K.K., Hahn, P.F. and Mueller, P.R. (1998) Ablation of Liver Tumors Using Percutaneous RF Therapy. American Journal of Roentgenology, 170, 1023-1028. http://dx.doi.org/10.2214/ajr.170.4.9530053
|
[29]
|
Okuma, T., Matsuoka, T., Yamamoto, A., Oyama, Y., Inoue, K., Nakmura, K. and Inoue, Y. (2007) Factors Contributing to Cavitation after CT-Guided Percutaneous Radiofrequency Ablation for Lung Tumors. Journal of Vascular and Interventional Radiology, 18, 399-404. http://dx.doi.org/10.1016/j.jvir.2007.01.004
|
[30]
|
Chhajed, P.N. and Tamm, M. (2003) Radiofrequency Heat Ablation for Lung Tumors: Potential Applications. Medical Science Monitor, 9, ED5-7.
|
[31]
|
Hall-Craggs, M.A. and Vaidya, J.S. (2002) Minimally Invasive Therapy for the Treatment of Breast Tumours. European Journal of Radiology, 42, 52-57. http://dx.doi.org/10.1016/S0720-048X(02)00019-0
|
[32]
|
Seed, P.K. and Stea, B. (1996) Thermoradiotherapy for Brain Tumors. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermoradiotherapy and Thermochemotherapy, Vol. 2, Clinical Applications, Springer Verlag, Telos, 159-173.
|
[33]
|
Nakajima, T., Roberts, D.W., Ryan, T.P., Hoopes, P.J., Coughlin, C.T. and Trembly, S. (1993) Pattern of Response to Interstitial Hyperthermia and Brachytherapy for Malignant Intracranial Tumor: A CT Analysis. International Journal of Hyperthermia, 9, 491-502. http://dx.doi.org/10.3109/02656739309005047
|
[34]
|
Iacono, R.P., Stea, B., Lulu, B.A., Celas, T. and Cassady, J.R. (1992) Template-Guided Stereotactic Implantation of Malignant Brain Tumors for Interstitial Thermoradiotherapy. Stereotactic and Functional Neurosurgery, 59, 199-204. http://dx.doi.org/10.1159/000098942
|
[35]
|
Sneed, P.K., Gutin, P.H., Stauffer, P.R., Phillips, T.L., Prados, M.D., Weaver, K.A., et al. (1992) Thermoradiotherapy of Recurrent Malignant Brain Tumors. International Journal of Radiation Oncology, Biology, Physics, 23, 853-861. http://dx.doi.org/10.1016/0360-3016(92)90659-6
|
[36]
|
Borok, T.L., Winter, A., Laing, J., Paglione, R., Sterzer, F., Sinclair, I. and Plafker, J. (1988) Microwave Hyperthermia Radiosensitized Iridium-192 for Recurrent Brain Malignancy. Medical Dosimetry, 13, 29-36. http://dx.doi.org/10.1016/S0958-3947(98)90109-1
|
[37]
|
Moran, C.J., Marchosky, J.A., Wippold, F.J., DeFord, J.A. and Fearnot, N.E. (1995) Conductive Interstitial Hyperthermia in the Treatment of Intracranial Metastatic Disease. Journal of Neuro-Oncology, 26, 53-63. http://dx.doi.org/10.1007/BF01054769
|
[38]
|
Fan, M., Ascher, P.W., Schröttner, O., Ebner, F., Germann, R.H. and Kleinert, R. (1992) Interstitial 1.06 Nd:YAG Laser Thermotherapy for Brain Tumors under Real-Time Monitoring of MRI: Experimental Study and Phase I Clinical Trial. Journal of Clinical Laser Medicine & Surgery, 10, 355-361.
|
[39]
|
Kahn, T., Harth, T., Bettag, M., Schwabe, B., Ulrich, F., Schwarzmaier, H.J. and Mödder, U. (1997) Preliminary Experience with the Application of Gadolinium-DTPA before MR Imaging-Guided Laser-Induced Interstitial Thermotherapy of Brain Tumors. Journal of Magnetic Resonance Imaging, 7, 226-229. http://dx.doi.org/10.1002/jmri.1880070135
|
[40]
|
Ara, G., Anderson, R.R. and Mandel, K.G. (1989) Irradiation of Pigmented Melanoma Cells with High-Intensity Pulsed Radiation Generates Acoustic Waves and Kills the Cells. Lasers in Surgery and Medicine, 10, 52-59. http://dx.doi.org/10.1002/lsm.1900100112
|
[41]
|
Walser, E.M. (2005) Percutaneous Laser Ablation in the Treatment of Hepatocellular Carcinoma with a Tumor Size of 4 cm or Smaller. Journal of Vascular and Interventional Radiology, 16, 1427-1429. http://dx.doi.org/10.1097/01.RVI.0000188755.61481.E8
|
[42]
|
Pacella, C.M., Valle, D., Bizzarri, G., Pacella, S., Brunetti, M., Maritati, R., et al. (2006) Percutaneous Laser Ablation in Patients with Isolated Unresectable Live Metastases from Colorectal Cancer: Results of a Phase II Study. Acta Oncologica, 45, 77-83. http://dx.doi.org/10.1080/02841860500438029
|
[43]
|
Wang, Y., Gonzalez, M., Cheng, C., Haouala, A., Krueger, T., Peters, S., et al. (2012) Photodynamic Induced Uptake of Liposomal Doxorubicin to Rat Lung Tumors Parallels Tumor Vascular Density. Lasers in Surgery and Medicine, 44, 318-324. http://dx.doi.org/10.1002/lsm.22013
|
[44]
|
Levy, J.G. (1994) Photosensitizers in Photodynamic Therapy. Seminars in Oncology, 21, 4-10.
|
[45]
|
Torchilin, V.P. (2006) Multifunctional Nanocarriers. Advanced Drug Delivery Reviews, 58, 1532-1555. http://dx.doi.org/10.1016/j.addr.2006.09.009
|
[46]
|
Brannon-Peppas, L. and Blanchette, J.O. (2004) Nanoparticle and Targeted Systems for Cancer Therapy. Advanced Drug Delivery Reviews, 56, 1649-1659. http://dx.doi.org/10.1016/j.addr.2004.02.014
|
[47]
|
Chatterjee, D.K., Fong, L.S. and Zhang, Y. (2008) Nanoparticles in Photodynamic Therapy: An Emerging Paradigm. Advanced Drug Delivery Reviews, 60, 1627-1637. http://dx.doi.org/10.1016/j.addr.2008.08.003
|
[48]
|
Choi, J., Yang, J., Bang, D., Park, J., Suh, J.S., Huh, Y.M. and Haam, S. (2012) Targetable Gold Nanorods for Epithelial Cancer Therapy Guided by Near-IR Absorption Imaging. Small, 8, 746-753. http://dx.doi.org/10.1002/smll.201101789
|
[49]
|
Jain, P.K., Huang, X., El-Sayed, I.H. and El-Sayed, M.A. (2008) Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 41, 1578-1586. http://dx.doi.org/10.1021/ar7002804
|
[50]
|
Rand, R.W., Snow, H.D. and Brown, W.J. (1982) Thermomagnetic Surgery for Cancer. Journal of Surgical Research, 33, 177-183. http://dx.doi.org/10.1016/0022-4804(82)90026-9
|
[51]
|
Matsuki, H., Satoh, T. and Murakami, K. (1990) Local Hyperthermia Based on Soft Heating Method Utilizing Temperature Sensitive Ferrite-Rod. IEEE Transactions on Magnetics, 26, 1551-1553. http://dx.doi.org/10.1109/20.104442
|
[52]
|
Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C. and Taylor, C.B. (1957) Selective Inductive Heating of Lymph Nodes. Annals of Surgery, 146, 596-606. http://dx.doi.org/10.1097/00000658-195710000-00007
|
[53]
|
Jordan, A., Scholz, R., Wust, P., Faehling, H. and Felix, R. (1999) Magnetic Fluid Hyperthermia (MFH): Caner Treatment with AC Magnetic Field Induced Excitation of Biocompatible Supermegnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 201, 413-419. http://dx.doi.org/10.1016/S0304-8853(99)00088-8
|
[54]
|
Bakht, M.K., Sadeghi, M., Pourbaghi-Masouleh, M. and Tenreiro, C. (2012) Scope of Nanotechnology-Based Radiation Therapy and Thermotherapy Methods in Cancer Treatment. Current Cancer Drug Targets, 12, 998-1015. http://dx.doi.org/10.2174/156800912803251216
|
[55]
|
Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., et al. (2001) Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia. Journal of Magnetism and Magnetic Materials, 225, 118-126. http://dx.doi.org/10.1016/S0304-8853(00)01239-7
|
[56]
|
Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M. and Parak, W.J. (2008) Biological Applications of Gold Nanoparticles. Chemical Society Reviews, 37, 1896-1908. http://dx.doi.org/10.1039/b712170a
|
[57]
|
Secret, E., Smith, K., Dubljevic, V., Moore, E., Macardle, P., Delalat, B., et al. (2013) Antibody Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs. Advanced Healthcare Materials, 40, 718-727. http://dx.doi.org/10.1002/adhm.201200335
|
[58]
|
Gordon, R.T., Hines, J.R. and Gordon, D. (1979) Intracellular Hyperthermia: A Biophysical Approach to Cancer Treatment via Intracellular Temperature and Biophysical Alteration. Medical Hypotheses, 5, 83-102. http://dx.doi.org/10.1016/0306-9877(79)90063-X
|
[59]
|
Rabin, Y. (2002) Is Intracellular Hyperthermia Superior to Extracellular in the Thermal Sense? International Journal of Hyperthermia, 18, 194-202. http://dx.doi.org/10.1080/02656730110116713
|
[60]
|
Andocs, G., Meggyeshazi, N., Balogh, L., Spisak, S., Maros, M.E., Balla, P., et al. (2015) Upregulation of Heat Shock Proteins and the Promotion of Damage Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperons, 20, 37-46. http://dx.doi.org/10.1007/s12192-014-0523-6
|
[61]
|
Keisari, Y. (2013) Tumor Ablation, Effects on Systemic and Local Anti-Tumor Immunity and on Other Tumor-Microenvironment Interactions. The Tumor Microenvironment, Vol. 5, Springer, Dordrecht.
|
[62]
|
Schroeder, A., Heller, D.A., Winslow, M.M., Dahlman, J.E., Pratt, G.W., Langer, R., et al. (2012) Treating Metastatic Cancer with Nanotechnology. Nature Reviews Cancer, 12, 39-50. http://dx.doi.org/10.1038/nrc3180
|
[63]
|
Qin, W., Akutsu, Y., Andocs, G., Suganami, A., Hu, X., Yusup, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379. http://dx.doi.org/10.3892/or.2014.3500
|
[64]
|
Andocs, G., Meggyeshazi, N., Okamoto, Y., Balogh, L. and Szasz, O. (2013) Bystander Effect of Oncothermia. Conference Papers in Medicine, 2013, Article ID: 953482. http://dx.doi.org/10.1155/2013/953482
|
[65]
|
Meggyesházi, N., Andocs, G., Balogh, L., Balla, P., Kiszner, G., Teleki, I., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 10, 815-822. http://dx.doi.org/10.1007/s00066-014-0617-1
|
[66]
|
Immunotherm (2014) Registered Trademark of Oncotherm Kft. Ref. No. 012226585.
|
[67]
|
Szasz, A. and Vincze, G. (2006) Dose Concept of Oncological Hyperthermia: Heat-Equation Considering the Cell Destruction. Journal of Cancer Research and Therapeutics, 2, 171-181. http://dx.doi.org/10.4103/0973-1482.29827
|
[68]
|
Szasz, A. (2007) Hyperthermia, a Modality in the Wings. Journal of Cancer Research and Therapeutics, 3, 56-66. http://dx.doi.org/10.4103/0973-1482.31976
|
[69]
|
LeVeen, H.H., Wapnick, S., Picone, V., Folk, G. and Ahmed, N. (1976) Tumor Eradication by Radiofrequency Therapy. JAMA, 235, 2198-2200. http://dx.doi.org/10.1001/jama.1976.03260460018014
|
[70]
|
Pettigrew, R.T., Gait, J.M., Ludgate, C.M. and Smith, A.N. (1974) Clinical Effects of Whole-Body Hyperthermia in Advanced Malignancy. BMJ, 4, 679-682. http://dx.doi.org/10.1136/bmj.4.5946.679
|
[71]
|
Johnson, H.J. (1940) The Action of Short Radio Waves on Tissues III. A Comparison of the Thermal Sensitivities of Transplantable Tumors “in Vivo” and “in Vitro”. American Journal of Cancer, 38, 533-550.
|
[72]
|
Linkermann, A. and Green, D.R. (2014) Necroptosis. The New England Journal of Medicine, 370, 455-465. http://dx.doi.org/10.1056/NEJMra1310050
|
[73]
|
Berghe, T.V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. and Vandenabeele, P. (2014) Regulated Necrosis: The Expanding Network of Non-Apoptotic Cell Death Pathways. Nature Reviews Molecular Cell Biology, 15, 135-147. http://dx.doi.org/10.1038/nrm3737
|
[74]
|
van der Zee, J. (2005) Presentation on Conference in Mumbai. India. http://www.google.com/#sclient=psy&hl=en&site=&source=hp&q=%22van+der+Zee%22+Mumbai+ext:ppt&btnG=Google+Search&aq=&aqi=&aql=&oq=&pbx=1&bav=on
|
[75]
|
Findlay, R.P. and Dimbylow, P.J. (2005) Effects of Posture on FDTD Calculations of Specific Absorption Rate in a Voxel Model of the Human Body. Physics in Medicine and Biology, 50, 3825-3835. http://dx.doi.org/10.1088/0031-9155/50/16/011
|
[76]
|
Joo, E., Szasz, A. and Szendro, P. (2005) Metal-Framed Spectacles and Implants and Specific Absorption Rate among Adults and Children Using Mobile Phones at 900/1800/2100 MHz. Electromagnetic Biology and Medicine, 25, 103-112. http://dx.doi.org/10.1080/15368370600719042
|
[77]
|
Wang, J.Q., Mukaide, N. and Fujiwara, O. (2003) FTDT Calculation of Organ Resonance Characteristics in an Anatomically Based Human Model for Plane-Wave Exposure. Proceedings of Asia-Pacific Conference on Environmental Electromagnetics, Hangzhou, 4-7 November, 126-129.
|
[78]
|
Armstron Laboratory (1997) Radiofrequency Radiation Dosimetry Handbook. USAF School of Aerospace Medicine, AFSC, Brooks Air Force Base. http://niremf.ifac.cnr.it/docs/HANDBOOK/chp1.htm
|
[79]
|
Gillooly, J.F., Allen, A.P., Savage, V.M., Charnov, E.L., West, G.B. and Brown, J.H. (2006) Response to Clarke and Fraser: Effects to Temperature on Metabolic Rate. Functional Ecology, 20, 400-404. http://dx.doi.org/10.1111/j.1365-2435.2006.01110.x
|
[80]
|
Lindholm, C.-E. (1992) Hyperthermia and Radiotherapy. PhD Thesis, Lund University, Malmo.
|
[81]
|
Hafstrom, L., Rudenstam, C.M., Blomquist, E., Ingvar, C., Jönsson, P.E., Lagerlöf, B., et al. (1991) Regional Hyperthermic Perfusion with Melphalan after Surgery for Recurrent Malignant Melanoma of the Extremities. Journal of Clinical Oncology, 9, 2091-2094.
|
[82]
|
Chang, I.A. (2010) Considerations for Thermal Injury Analysis for RF Ablation Devices. The Open Biomedical Engineering Journal, 4, 3-12. http://dx.doi.org/10.2174/1874120701004010003
|
[83]
|
Dewey, W.C., Hopwood, L.E., Sapareto, S.A. and Gerweck, L.E. (1977) Cellular Responses to Combinations of Hyperthermia and Radiation. Radiology, 123, 463-474. http://dx.doi.org/10.1148/123.2.463
|
[84]
|
Pearce, J.A. (2012) Thermal Dose Models: Irreversible Alterations in Tissues. In: Moros, E.G., Ed., Physics of Thermal Therapy. Fundamentals and Clinical Applications, Taylor and Francis, CRC Press, Boca Raton, 23-40.
|
[85]
|
Wright, N.T. (2001) On a Relationship between the Arrhenius Parameters from Thermal Damage Studies. Journal of Biomechanical Engineering, 125, 300-304. http://dx.doi.org/10.1115/1.1553974
|
[86]
|
Sapareto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology, Biology, Physics, 10, 787-800. http://dx.doi.org/10.1016/0360-3016(84)90379-1
|
[87]
|
Pearce, J.A. (2009) Relationship between Arrhenius Models of Thermal Damage and the CEM 43 Thermal Dose. Proceedings of SPIE, Energy-Based Treatment of Tissue and Assessment V, 7181, Article ID: 718104. http://dx.doi.org/10.1117/12.807999
|
[88]
|
Urano, M. and Douple, E. (1994) Hyperthermia in Oncology. Vol. 4, Chemopotentiation by Hyperthermia, VSP Utrecht, Tokyo, 173.
|
[89]
|
Dewey, W.C. (1994) Arrhenius Relationships from the Molecule and Cell to the Clinic. International Journal of Hyperthermia, 10, 457-483. http://dx.doi.org/10.3109/02656739409009351
|
[90]
|
Urano, M. (1994) Thermochemotherapy: From in Vitro and in Vivo Experiments to Potential Clinical Application. In: Urano, M. and Douple, E., Eds., Hyperthermia and Oncology, Vol. 4, VSP Utrecht, Tokyo, 169-204.
|
[91]
|
Erdmann, B., Lang, J. and Seebass, M. (1998) Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model. Annals of the New York Academy of Sciences, 858, 36-46.
|
[92]
|
Lindholm, C.-E. (1992) Hyperthermia and Radiotherapy. PhD Thesis, Lund University, Malmo.
|
[93]
|
Henriques, F.C. and Moritz, A.R. (1947) Studies of Thermal Injury I: The Conduction of Heat to and through Skin and the Temperature Attained Therein. American Journal of Pathology, 23, 530-549.
|
[94]
|
Watanabe, M., Suzuki, K., Kodama, S. and Sugahara, T. (1995) Normal Human Cells at Confluence Get Heat Resistance by Efficient Accumulation of HSP72 in Nucleus. Carcinogenesis, 16, 2373-2380. http://dx.doi.org/10.1093/carcin/16.10.2373
|
[95]
|
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer, Heidelberg.
|
[96]
|
Silbernagl, S. and Despopoulos, A. (2012) Taxchenatlas Physiologie. Thieme-Verlag, Stuttgart.
|
[97]
|
Dewhirst, M.W., Ozimek, E.J., Gross, J. and Cetas, T.C. (1980) Will Hyperthermia Conquer the Elusive Hypoxic Cell? Radiology, 137, 811-817. http://dx.doi.org/10.1148/radiology.137.3.7003650
|
[98]
|
Vaupel, P.W. and Kelleher, D.K. (1996) Metabolic Status and Reaction to Heat of Normal and Tumor Tissue. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C. Eds., Thermo-Radiotherapy and Thermo-Chemiotherapy, Vol. 1, Biology, Physiology and Physics, Springer Verlag, Berlin, 157-176.
|
[99]
|
Lindegaard, J.C. (1992) Thermosensitization Induced by Step-Down Heating. International Journal of Hyperthermia, 8, 561-582. http://dx.doi.org/10.3109/02656739209037994
|
[100]
|
Hayashi, S., Kano, E., Hatashita, M., Othsubo, T., Katayama, K. and Matsumoto, H. (2001) Fundamental Aspects of Hyperthermia on Cellular and Molecular Level. In: Kosaka, M., Sugahara, T., Schmidt, K.L. and Simon, E., Eds., Thermotherapy for Neoplasia, Inflammation, and Pain, Springer, Tokyo, 335-345. http://dx.doi.org/10.1007/978-4-431-67035-3_38
|
[101]
|
Weaver, J.C. and Chizmadzhev, Y.A. (1996) Theory of Electroporation: A Review. Bioelectrochemistry and Bioenergetics, 41, 135-160. http://dx.doi.org/10.1016/S0302-4598(96)05062-3
|
[102]
|
Garner, A.L., Deminsky, M., Necuales, V.B., Chashihin, V., Knizhnik, A. and Poatpkin, B. (2013) Cell Membrane Thermal Gradients Induced by Electromagnetic Fields. Journal of Applied Physics, 113, Article ID: 214701. http://dx.doi.org/10.1063/1.4809642
|
[103]
|
Szasz, A. and Morita, T. (2012) Heat Therapy in Oncology—Oncothermia, New Paradigm in Hyperthermia. Nippon Hyoronsha, Tokyo.
|
[104]
|
Baronzio, G., Parmar, G., Ballerini, M., Szasz, A., Baronzio, M. and Cassutti, V. (2014) A Brief Overview of Hyperthermia in Cancer Treatment. Journal of Integrative Oncology, 3, 115. http://dx.doi.org/10.4172/2329-6771.1000115
|
[105]
|
Rajendran, L. and Simons, K. (2005) Lipid Rafts and Membrane Dynamics. Journal of Cell Science, 118, 1099-1102. http://dx.doi.org/10.1242/jcs.01681
|
[106]
|
Szasz, O. and Szasz, A. (2014) Oncothermia—Nano-Heating Paradigm. Journal of Cancer Science & Therapy, 6, 117-121. http://dx.doi.org/10.4172/1948-5956.1000259
|
[107]
|
Szasz, A., Iluri, N. and Szasz, O. (2013) Local Hyperthermia in Oncology—To Choose or not to Choose? In: Huilgol, N., Ed., Hyperthermia, InTech, Winchester, 1-82.
|
[108]
|
Szasz, A., Vincze, G., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Electromagnetic Biology and Medicine, 22, 103-115. http://dx.doi.org/10.1081/JBC-120024620
|
[109]
|
Szasz, A. (2013) Challenges and Solutions in Oncological Hyperthermia. Thermal Medicine, 29, 1-23. http://dx.doi.org/10.3191/thermalmed.29.1
|
[110]
|
Elmore, S. (2007) Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35, 495-516. http://dx.doi.org/10.1080/01926230701320337
|
[111]
|
Chang, L.K., Putcha, G.V., Deshmukh, M. and Johnson Jr., E.M. (2002) Mitochondrial Involvement in the Point of No Return in Neuronal Apoptosis. Biochimie, 84, 223-231. http://dx.doi.org/10.1016/S0300-9084(02)01372-X
|
[112]
|
Szasz, A. (2014) Bioelectromagnetic Paradigm of Cancer Treatment-Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, Taylor and Francis Group, CRC Press, Boca Raton, 323-336.
|
[113]
|
Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126. http://dx.doi.org/10.1007/s00066-009-1903-1
|
[114]
|
Wismeth, C., Dudel, C., Pascher, C., Ramm, P., Pietsch, T., Hirschmann, B., et al. (2010) Transcarnial Electro-Hyperthermia Combined with Alkylating Chemotherapy in Patients with Relapsed High-Grade Gliomas—Phase I Clinical Results. Journal of Neuro-Oncology, 98, 395-405. http://dx.doi.org/10.1007/s11060-009-0093-0
|
[115]
|
Jeung, T.S., Ma, S.Y., Yu, J. and Lim, S. (2013) Cases That Respond to Oncothermia Monotherapy. Conference Papers in Medicine, 2013, Article ID: 392480. http://dx.doi.org/10.1155/2013/392480
|