Generalization of the Thermal Dose of Hyperthermia in Oncology


Hyperthermia has been a modality to treat cancer for thousands of years. During this time, intensive efforts are concentrated on determining the dose of the proper treatment, but the dominantly in vitro induced cellular death does not provide enough confidence for the clinical dosing. The cell-death by heat-monotherapy applications in laboratory experiments is difficult to apply in the complementary therapies in clinical applications. The newly developed nanotechnologies offer completely new possibilities in this field as well. Modulated electro-hyperthermia (mEHT, trade-name Oncothermia) is a nanoheating technology that has selective effects on membrane rafts and on the transmembrane proteins. This effect is thermal. The thermal action is in nanoscopic range which makes the phenomenon special. Our objective is to show the dose concept on this emerging method.

Share and Cite:

Vincze, G. , Szasz, O. and Szasz, A. (2015) Generalization of the Thermal Dose of Hyperthermia in Oncology. Open Journal of Biophysics, 5, 97-114. doi: 10.4236/ojbiphy.2015.54009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Seegenschmiedt, M.H. and Vernon, C.C. (1996) A Historical Perspective on Hyperthermia in Oncology. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermo-Radiotherapy and Thermo-Chemiotherapy, Springer, Berlin Heidelberg, 3-46.
[2] Roussakow, R. (2013) The History of Hyperthermia Rise and Decline. Conference Papers in Medicine, 2013, Article ID: 428027.
[3] Baronzio, G., Jackson, M., Lee, D. and Szasz, A. (2013) Editorial of the Conference of the International Clinical Hyperthermia Society 2012. Conference Papers in Medicine, 2013, Article ID: 690739.
[4] Szasz, A. (2013) “Quo Vadis” Oncologic Hyperthermia? Conference Papers in Medicine, 2013, Article ID: 201671.
[5] Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Thermal Dosimetry: The Key to Hyperthermia’s Future. International Journal of Hyperthermia, 22, 247-253.
[6] von Ardenne, A. and Wehner, H. (2005) Extreme Whole-Body Hyperthermia with Water-Filtered Infrared-A Radiation. Eurekah Bioscience Collection, Oncology, Landes Bioscience.
[7] Devrient, W. (1950) überwärmungsbäder. Weber’s Verlag, Berlin.
[8] Fieber, H.F. (1957) Unspezifische Abwehrvorgänge, Unspezifische Therapie. Georg Thieme, Stuttgart.
[9] Lampert, H. (1948) überwärmung als Heilmittel. Hippokrates, Stuttgart.
[10] Schmidt, K.L. (1987) Hyperthermie und Fieber. Hippokrates, Stuttgart.
[11] Heckel, M. (1990) Ganzkörperhyperthermie und Fiebertherapie—Grundlagen und Praxis. Hippokrates, Stuttgart.
[12] Heckel, M. (1992) Fiebertherapie und Ganzkörper-HT, Bessere Verträglichkeit und Effizienz durch thermoregulatorisch ausgewogene, kombinierte Anwendung beider Verfahren. ThermoMed, No. 14, 19 p.
[13] Hildebrandt, B., Drager, J., Kerner, T., Deja, M., Löffel, J., Stroszczynski, C., et al. (2004) Whole-Body Hyperthermia in the Scope of von Ardenne’s Systemic Cancer Multistep Therapy (sCMT) Combined with Chemotherapy in Patients with Metastatic Colorectal Cancer: A Phase I/II Study. International Journal of Hyperthermia, 20, 317-333.
[14] Wust, P., Riess, H. and Hildebrandt, B. (2000) Feasibility and Analysis of Thermal Parameters for the Whole-Body Hyperthermia System IRATHERM. International Journal of Hyperthermia, 4, 325-339.
[15] Szasz, A., Szasz, O. and Szasz, N. (2006) Physical Background and Technical Realization of Hyperthermia. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer, Springer Science, Berlin, 27-59.
[16] Nishide, O.J.R. (1985) The Role of Magnetic Inductiontechniques for Producing Hyperthermia. In: Anghileri, L.J., Robert, J., Eds., Hyperthermia in Cancer Treatment, Vol. II, CRC Press, Boca Roton, 141-154.
[17] Nishide, S.M. and Ueno, S. (1993) A Method of Localized Hyperthermia by Using a Figure-of-Eight Coil and Short-Circuit Rings. Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, 31 October 1993, 1447-1448.
[18] Jojo, M., Murakami, A., Sato, F., Matsuki, H. and Sato, T. (2001) Consideration of Handy Excitation Apparatus for the Inductive Hyperthermia. IEEE Transactions on Magnetics, 37, 2944-2946.
[19] Dahl, O., Dalene, R. and Schem, B.C. (1999) Status of Clinical Hyperthermia. Acta Oncologica, 38, 863-873.
[20] Senior, K. (2001) Hyperthermia and Hypoxia for Cancer-Cell Destruction. Lancet Oncology, 2, 524-525.
[21] Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., et al. (2002) Hyperthermia in Combined Treatment of Cancer. Lancet Oncology, 3, 487-497.
[22] Szasz, A., Szasz, O. and Szasz, N. (2001) Electro-Hyperthermia: A New Paradigm in Cancer Therapy. Deutsche Zeitschrift für Onkologie, 33, 91-99.
[23] Szasz, A., Szasz, N. and Szasz, O. (2003) Hyperthermie in der Onkologie mit einem historischen Uberblick. Deutsche Zeitschrift für Onkologie, 35, 140-154.
[24] Abe, M., Hiraoka, M., Takahashi, M., Egawa, S., Matsuda, C., Onoyama, Y., et al. (1986) Multi-Institutional Studies on Hyperthermia Using an 8-MHz Radiofrequency Capacitive Heating Device (Thermotron RF-8) in Combination with Radiation for Cancer Therapy. Cancer, 58, 1589-1595.<1589::AID-CNCR2820580802>3.0.CO;2-B
[25] Nagy, G., Meggyeshazi, N. and Szasz, O. (2013) Deep Temperature Measurements in Oncothermia Processes. Conference Papers in Medicine, 2013, Article ID: 685264.
[26] Vargas, H.I., Dooley, W.C., Gardner, R.A., Gonzalez, K.D., Venegas, R., Heywang-Kobrunner, S.H. and Fenn, A.J. (2004) Focused Microwave Phased Array Thermotherapy for Ablation of Early-Stage Breast Cancer: Results of Thermal Dose Escalation. Annals of Surgical Oncology, 11, 139-146.
[27] Ellis, L.M., Curley, S.A. and Tanabe, K.K. (2004) Radiofrequency Ablation of Cancer. Springer Verlag, New York, Berlin.
[28] Goldberg, S.N., Gazelle, G.S., Solbiati, L., Livraghi, T., Tanabe, K.K., Hahn, P.F. and Mueller, P.R. (1998) Ablation of Liver Tumors Using Percutaneous RF Therapy. American Journal of Roentgenology, 170, 1023-1028.
[29] Okuma, T., Matsuoka, T., Yamamoto, A., Oyama, Y., Inoue, K., Nakmura, K. and Inoue, Y. (2007) Factors Contributing to Cavitation after CT-Guided Percutaneous Radiofrequency Ablation for Lung Tumors. Journal of Vascular and Interventional Radiology, 18, 399-404.
[30] Chhajed, P.N. and Tamm, M. (2003) Radiofrequency Heat Ablation for Lung Tumors: Potential Applications. Medical Science Monitor, 9, ED5-7.
[31] Hall-Craggs, M.A. and Vaidya, J.S. (2002) Minimally Invasive Therapy for the Treatment of Breast Tumours. European Journal of Radiology, 42, 52-57.
[32] Seed, P.K. and Stea, B. (1996) Thermoradiotherapy for Brain Tumors. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermoradiotherapy and Thermochemotherapy, Vol. 2, Clinical Applications, Springer Verlag, Telos, 159-173.
[33] Nakajima, T., Roberts, D.W., Ryan, T.P., Hoopes, P.J., Coughlin, C.T. and Trembly, S. (1993) Pattern of Response to Interstitial Hyperthermia and Brachytherapy for Malignant Intracranial Tumor: A CT Analysis. International Journal of Hyperthermia, 9, 491-502.
[34] Iacono, R.P., Stea, B., Lulu, B.A., Celas, T. and Cassady, J.R. (1992) Template-Guided Stereotactic Implantation of Malignant Brain Tumors for Interstitial Thermoradiotherapy. Stereotactic and Functional Neurosurgery, 59, 199-204.
[35] Sneed, P.K., Gutin, P.H., Stauffer, P.R., Phillips, T.L., Prados, M.D., Weaver, K.A., et al. (1992) Thermoradiotherapy of Recurrent Malignant Brain Tumors. International Journal of Radiation Oncology, Biology, Physics, 23, 853-861.
[36] Borok, T.L., Winter, A., Laing, J., Paglione, R., Sterzer, F., Sinclair, I. and Plafker, J. (1988) Microwave Hyperthermia Radiosensitized Iridium-192 for Recurrent Brain Malignancy. Medical Dosimetry, 13, 29-36.
[37] Moran, C.J., Marchosky, J.A., Wippold, F.J., DeFord, J.A. and Fearnot, N.E. (1995) Conductive Interstitial Hyperthermia in the Treatment of Intracranial Metastatic Disease. Journal of Neuro-Oncology, 26, 53-63.
[38] Fan, M., Ascher, P.W., Schröttner, O., Ebner, F., Germann, R.H. and Kleinert, R. (1992) Interstitial 1.06 Nd:YAG Laser Thermotherapy for Brain Tumors under Real-Time Monitoring of MRI: Experimental Study and Phase I Clinical Trial. Journal of Clinical Laser Medicine & Surgery, 10, 355-361.
[39] Kahn, T., Harth, T., Bettag, M., Schwabe, B., Ulrich, F., Schwarzmaier, H.J. and Mödder, U. (1997) Preliminary Experience with the Application of Gadolinium-DTPA before MR Imaging-Guided Laser-Induced Interstitial Thermotherapy of Brain Tumors. Journal of Magnetic Resonance Imaging, 7, 226-229.
[40] Ara, G., Anderson, R.R. and Mandel, K.G. (1989) Irradiation of Pigmented Melanoma Cells with High-Intensity Pulsed Radiation Generates Acoustic Waves and Kills the Cells. Lasers in Surgery and Medicine, 10, 52-59.
[41] Walser, E.M. (2005) Percutaneous Laser Ablation in the Treatment of Hepatocellular Carcinoma with a Tumor Size of 4 cm or Smaller. Journal of Vascular and Interventional Radiology, 16, 1427-1429.
[42] Pacella, C.M., Valle, D., Bizzarri, G., Pacella, S., Brunetti, M., Maritati, R., et al. (2006) Percutaneous Laser Ablation in Patients with Isolated Unresectable Live Metastases from Colorectal Cancer: Results of a Phase II Study. Acta Oncologica, 45, 77-83.
[43] Wang, Y., Gonzalez, M., Cheng, C., Haouala, A., Krueger, T., Peters, S., et al. (2012) Photodynamic Induced Uptake of Liposomal Doxorubicin to Rat Lung Tumors Parallels Tumor Vascular Density. Lasers in Surgery and Medicine, 44, 318-324.
[44] Levy, J.G. (1994) Photosensitizers in Photodynamic Therapy. Seminars in Oncology, 21, 4-10.
[45] Torchilin, V.P. (2006) Multifunctional Nanocarriers. Advanced Drug Delivery Reviews, 58, 1532-1555.
[46] Brannon-Peppas, L. and Blanchette, J.O. (2004) Nanoparticle and Targeted Systems for Cancer Therapy. Advanced Drug Delivery Reviews, 56, 1649-1659.
[47] Chatterjee, D.K., Fong, L.S. and Zhang, Y. (2008) Nanoparticles in Photodynamic Therapy: An Emerging Paradigm. Advanced Drug Delivery Reviews, 60, 1627-1637.
[48] Choi, J., Yang, J., Bang, D., Park, J., Suh, J.S., Huh, Y.M. and Haam, S. (2012) Targetable Gold Nanorods for Epithelial Cancer Therapy Guided by Near-IR Absorption Imaging. Small, 8, 746-753.
[49] Jain, P.K., Huang, X., El-Sayed, I.H. and El-Sayed, M.A. (2008) Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 41, 1578-1586.
[50] Rand, R.W., Snow, H.D. and Brown, W.J. (1982) Thermomagnetic Surgery for Cancer. Journal of Surgical Research, 33, 177-183.
[51] Matsuki, H., Satoh, T. and Murakami, K. (1990) Local Hyperthermia Based on Soft Heating Method Utilizing Temperature Sensitive Ferrite-Rod. IEEE Transactions on Magnetics, 26, 1551-1553.
[52] Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C. and Taylor, C.B. (1957) Selective Inductive Heating of Lymph Nodes. Annals of Surgery, 146, 596-606.
[53] Jordan, A., Scholz, R., Wust, P., Faehling, H. and Felix, R. (1999) Magnetic Fluid Hyperthermia (MFH): Caner Treatment with AC Magnetic Field Induced Excitation of Biocompatible Supermegnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 201, 413-419.
[54] Bakht, M.K., Sadeghi, M., Pourbaghi-Masouleh, M. and Tenreiro, C. (2012) Scope of Nanotechnology-Based Radiation Therapy and Thermotherapy Methods in Cancer Treatment. Current Cancer Drug Targets, 12, 998-1015.
[55] Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., et al. (2001) Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia. Journal of Magnetism and Magnetic Materials, 225, 118-126.
[56] Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M. and Parak, W.J. (2008) Biological Applications of Gold Nanoparticles. Chemical Society Reviews, 37, 1896-1908.
[57] Secret, E., Smith, K., Dubljevic, V., Moore, E., Macardle, P., Delalat, B., et al. (2013) Antibody Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs. Advanced Healthcare Materials, 40, 718-727.
[58] Gordon, R.T., Hines, J.R. and Gordon, D. (1979) Intracellular Hyperthermia: A Biophysical Approach to Cancer Treatment via Intracellular Temperature and Biophysical Alteration. Medical Hypotheses, 5, 83-102.
[59] Rabin, Y. (2002) Is Intracellular Hyperthermia Superior to Extracellular in the Thermal Sense? International Journal of Hyperthermia, 18, 194-202.
[60] Andocs, G., Meggyeshazi, N., Balogh, L., Spisak, S., Maros, M.E., Balla, P., et al. (2015) Upregulation of Heat Shock Proteins and the Promotion of Damage Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperons, 20, 37-46.
[61] Keisari, Y. (2013) Tumor Ablation, Effects on Systemic and Local Anti-Tumor Immunity and on Other Tumor-Microenvironment Interactions. The Tumor Microenvironment, Vol. 5, Springer, Dordrecht.
[62] Schroeder, A., Heller, D.A., Winslow, M.M., Dahlman, J.E., Pratt, G.W., Langer, R., et al. (2012) Treating Metastatic Cancer with Nanotechnology. Nature Reviews Cancer, 12, 39-50.
[63] Qin, W., Akutsu, Y., Andocs, G., Suganami, A., Hu, X., Yusup, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379.
[64] Andocs, G., Meggyeshazi, N., Okamoto, Y., Balogh, L. and Szasz, O. (2013) Bystander Effect of Oncothermia. Conference Papers in Medicine, 2013, Article ID: 953482.
[65] Meggyesházi, N., Andocs, G., Balogh, L., Balla, P., Kiszner, G., Teleki, I., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 10, 815-822.
[66] Immunotherm (2014) Registered Trademark of Oncotherm Kft. Ref. No. 012226585.
[67] Szasz, A. and Vincze, G. (2006) Dose Concept of Oncological Hyperthermia: Heat-Equation Considering the Cell Destruction. Journal of Cancer Research and Therapeutics, 2, 171-181.
[68] Szasz, A. (2007) Hyperthermia, a Modality in the Wings. Journal of Cancer Research and Therapeutics, 3, 56-66.
[69] LeVeen, H.H., Wapnick, S., Picone, V., Folk, G. and Ahmed, N. (1976) Tumor Eradication by Radiofrequency Therapy. JAMA, 235, 2198-2200.
[70] Pettigrew, R.T., Gait, J.M., Ludgate, C.M. and Smith, A.N. (1974) Clinical Effects of Whole-Body Hyperthermia in Advanced Malignancy. BMJ, 4, 679-682.
[71] Johnson, H.J. (1940) The Action of Short Radio Waves on Tissues III. A Comparison of the Thermal Sensitivities of Transplantable Tumors “in Vivo” and “in Vitro”. American Journal of Cancer, 38, 533-550.
[72] Linkermann, A. and Green, D.R. (2014) Necroptosis. The New England Journal of Medicine, 370, 455-465.
[73] Berghe, T.V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. and Vandenabeele, P. (2014) Regulated Necrosis: The Expanding Network of Non-Apoptotic Cell Death Pathways. Nature Reviews Molecular Cell Biology, 15, 135-147.
[74] van der Zee, J. (2005) Presentation on Conference in Mumbai. India.
[75] Findlay, R.P. and Dimbylow, P.J. (2005) Effects of Posture on FDTD Calculations of Specific Absorption Rate in a Voxel Model of the Human Body. Physics in Medicine and Biology, 50, 3825-3835.
[76] Joo, E., Szasz, A. and Szendro, P. (2005) Metal-Framed Spectacles and Implants and Specific Absorption Rate among Adults and Children Using Mobile Phones at 900/1800/2100 MHz. Electromagnetic Biology and Medicine, 25, 103-112.
[77] Wang, J.Q., Mukaide, N. and Fujiwara, O. (2003) FTDT Calculation of Organ Resonance Characteristics in an Anatomically Based Human Model for Plane-Wave Exposure. Proceedings of Asia-Pacific Conference on Environmental Electromagnetics, Hangzhou, 4-7 November, 126-129.
[78] Armstron Laboratory (1997) Radiofrequency Radiation Dosimetry Handbook. USAF School of Aerospace Medicine, AFSC, Brooks Air Force Base.
[79] Gillooly, J.F., Allen, A.P., Savage, V.M., Charnov, E.L., West, G.B. and Brown, J.H. (2006) Response to Clarke and Fraser: Effects to Temperature on Metabolic Rate. Functional Ecology, 20, 400-404.
[80] Lindholm, C.-E. (1992) Hyperthermia and Radiotherapy. PhD Thesis, Lund University, Malmo.
[81] Hafstrom, L., Rudenstam, C.M., Blomquist, E., Ingvar, C., Jönsson, P.E., Lagerlöf, B., et al. (1991) Regional Hyperthermic Perfusion with Melphalan after Surgery for Recurrent Malignant Melanoma of the Extremities. Journal of Clinical Oncology, 9, 2091-2094.
[82] Chang, I.A. (2010) Considerations for Thermal Injury Analysis for RF Ablation Devices. The Open Biomedical Engineering Journal, 4, 3-12.
[83] Dewey, W.C., Hopwood, L.E., Sapareto, S.A. and Gerweck, L.E. (1977) Cellular Responses to Combinations of Hyperthermia and Radiation. Radiology, 123, 463-474.
[84] Pearce, J.A. (2012) Thermal Dose Models: Irreversible Alterations in Tissues. In: Moros, E.G., Ed., Physics of Thermal Therapy. Fundamentals and Clinical Applications, Taylor and Francis, CRC Press, Boca Raton, 23-40.
[85] Wright, N.T. (2001) On a Relationship between the Arrhenius Parameters from Thermal Damage Studies. Journal of Biomechanical Engineering, 125, 300-304.
[86] Sapareto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology, Biology, Physics, 10, 787-800.
[87] Pearce, J.A. (2009) Relationship between Arrhenius Models of Thermal Damage and the CEM 43 Thermal Dose. Proceedings of SPIE, Energy-Based Treatment of Tissue and Assessment V, 7181, Article ID: 718104.
[88] Urano, M. and Douple, E. (1994) Hyperthermia in Oncology. Vol. 4, Chemopotentiation by Hyperthermia, VSP Utrecht, Tokyo, 173.
[89] Dewey, W.C. (1994) Arrhenius Relationships from the Molecule and Cell to the Clinic. International Journal of Hyperthermia, 10, 457-483.
[90] Urano, M. (1994) Thermochemotherapy: From in Vitro and in Vivo Experiments to Potential Clinical Application. In: Urano, M. and Douple, E., Eds., Hyperthermia and Oncology, Vol. 4, VSP Utrecht, Tokyo, 169-204.
[91] Erdmann, B., Lang, J. and Seebass, M. (1998) Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model. Annals of the New York Academy of Sciences, 858, 36-46.
[92] Lindholm, C.-E. (1992) Hyperthermia and Radiotherapy. PhD Thesis, Lund University, Malmo.
[93] Henriques, F.C. and Moritz, A.R. (1947) Studies of Thermal Injury I: The Conduction of Heat to and through Skin and the Temperature Attained Therein. American Journal of Pathology, 23, 530-549.
[94] Watanabe, M., Suzuki, K., Kodama, S. and Sugahara, T. (1995) Normal Human Cells at Confluence Get Heat Resistance by Efficient Accumulation of HSP72 in Nucleus. Carcinogenesis, 16, 2373-2380.
[95] Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer, Heidelberg.
[96] Silbernagl, S. and Despopoulos, A. (2012) Taxchenatlas Physiologie. Thieme-Verlag, Stuttgart.
[97] Dewhirst, M.W., Ozimek, E.J., Gross, J. and Cetas, T.C. (1980) Will Hyperthermia Conquer the Elusive Hypoxic Cell? Radiology, 137, 811-817.
[98] Vaupel, P.W. and Kelleher, D.K. (1996) Metabolic Status and Reaction to Heat of Normal and Tumor Tissue. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C. Eds., Thermo-Radiotherapy and Thermo-Chemiotherapy, Vol. 1, Biology, Physiology and Physics, Springer Verlag, Berlin, 157-176.
[99] Lindegaard, J.C. (1992) Thermosensitization Induced by Step-Down Heating. International Journal of Hyperthermia, 8, 561-582.
[100] Hayashi, S., Kano, E., Hatashita, M., Othsubo, T., Katayama, K. and Matsumoto, H. (2001) Fundamental Aspects of Hyperthermia on Cellular and Molecular Level. In: Kosaka, M., Sugahara, T., Schmidt, K.L. and Simon, E., Eds., Thermotherapy for Neoplasia, Inflammation, and Pain, Springer, Tokyo, 335-345.
[101] Weaver, J.C. and Chizmadzhev, Y.A. (1996) Theory of Electroporation: A Review. Bioelectrochemistry and Bioenergetics, 41, 135-160.
[102] Garner, A.L., Deminsky, M., Necuales, V.B., Chashihin, V., Knizhnik, A. and Poatpkin, B. (2013) Cell Membrane Thermal Gradients Induced by Electromagnetic Fields. Journal of Applied Physics, 113, Article ID: 214701.
[103] Szasz, A. and Morita, T. (2012) Heat Therapy in Oncology—Oncothermia, New Paradigm in Hyperthermia. Nippon Hyoronsha, Tokyo.
[104] Baronzio, G., Parmar, G., Ballerini, M., Szasz, A., Baronzio, M. and Cassutti, V. (2014) A Brief Overview of Hyperthermia in Cancer Treatment. Journal of Integrative Oncology, 3, 115.
[105] Rajendran, L. and Simons, K. (2005) Lipid Rafts and Membrane Dynamics. Journal of Cell Science, 118, 1099-1102.
[106] Szasz, O. and Szasz, A. (2014) Oncothermia—Nano-Heating Paradigm. Journal of Cancer Science & Therapy, 6, 117-121.
[107] Szasz, A., Iluri, N. and Szasz, O. (2013) Local Hyperthermia in Oncology—To Choose or not to Choose? In: Huilgol, N., Ed., Hyperthermia, InTech, Winchester, 1-82.
[108] Szasz, A., Vincze, G., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Electromagnetic Biology and Medicine, 22, 103-115.
[109] Szasz, A. (2013) Challenges and Solutions in Oncological Hyperthermia. Thermal Medicine, 29, 1-23.
[110] Elmore, S. (2007) Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35, 495-516.
[111] Chang, L.K., Putcha, G.V., Deshmukh, M. and Johnson Jr., E.M. (2002) Mitochondrial Involvement in the Point of No Return in Neuronal Apoptosis. Biochimie, 84, 223-231.
[112] Szasz, A. (2014) Bioelectromagnetic Paradigm of Cancer Treatment-Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, Taylor and Francis Group, CRC Press, Boca Raton, 323-336.
[113] Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126.
[114] Wismeth, C., Dudel, C., Pascher, C., Ramm, P., Pietsch, T., Hirschmann, B., et al. (2010) Transcarnial Electro-Hyperthermia Combined with Alkylating Chemotherapy in Patients with Relapsed High-Grade Gliomas—Phase I Clinical Results. Journal of Neuro-Oncology, 98, 395-405.
[115] Jeung, T.S., Ma, S.Y., Yu, J. and Lim, S. (2013) Cases That Respond to Oncothermia Monotherapy. Conference Papers in Medicine, 2013, Article ID: 392480.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.