Generalization of the Thermal Dose of Hyperthermia in Oncology

Abstract Full-Text HTML XML Download Download as PDF (Size:449KB) PP. 97-114
DOI: 10.4236/ojbiphy.2015.54009    3,307 Downloads   4,201 Views   Citations


Hyperthermia has been a modality to treat cancer for thousands of years. During this time, intensive efforts are concentrated on determining the dose of the proper treatment, but the dominantly in vitro induced cellular death does not provide enough confidence for the clinical dosing. The cell-death by heat-monotherapy applications in laboratory experiments is difficult to apply in the complementary therapies in clinical applications. The newly developed nanotechnologies offer completely new possibilities in this field as well. Modulated electro-hyperthermia (mEHT, trade-name Oncothermia) is a nanoheating technology that has selective effects on membrane rafts and on the transmembrane proteins. This effect is thermal. The thermal action is in nanoscopic range which makes the phenomenon special. Our objective is to show the dose concept on this emerging method.

Cite this paper

Vincze, G. , Szasz, O. and Szasz, A. (2015) Generalization of the Thermal Dose of Hyperthermia in Oncology. Open Journal of Biophysics, 5, 97-114. doi: 10.4236/ojbiphy.2015.54009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Seegenschmiedt, M.H. and Vernon, C.C. (1996) A Historical Perspective on Hyperthermia in Oncology. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermo-Radiotherapy and Thermo-Chemiotherapy, Springer, Berlin Heidelberg, 3-46.
[2] Roussakow, R. (2013) The History of Hyperthermia Rise and Decline. Conference Papers in Medicine, 2013, Article ID: 428027.
[3] Baronzio, G., Jackson, M., Lee, D. and Szasz, A. (2013) Editorial of the Conference of the International Clinical Hyperthermia Society 2012. Conference Papers in Medicine, 2013, Article ID: 690739.
[4] Szasz, A. (2013) “Quo Vadis” Oncologic Hyperthermia? Conference Papers in Medicine, 2013, Article ID: 201671.
[5] Jones, E., Thrall, D., Dewhirst, M.W. and Vujaskovic, Z. (2006) Prospective Thermal Dosimetry: The Key to Hyperthermia’s Future. International Journal of Hyperthermia, 22, 247-253.
[6] von Ardenne, A. and Wehner, H. (2005) Extreme Whole-Body Hyperthermia with Water-Filtered Infrared-A Radiation. Eurekah Bioscience Collection, Oncology, Landes Bioscience.
[7] Devrient, W. (1950) überwärmungsbäder. Weber’s Verlag, Berlin.
[8] Fieber, H.F. (1957) Unspezifische Abwehrvorgänge, Unspez
[112] Szasz, A. (2014) Bioelectromagnetic Paradigm of Cancer Treatment-Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, Taylor and Francis Group, CRC Press, Boca Raton, 323-336.
[113] Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126.
[114] Wismeth, C., Dudel, C., Pascher, C., Ramm, P., Pietsch, T., Hirschmann, B., et al. (2010) Transcarnial Electro-Hyperthermia Combined with Alkylating Chemotherapy in Patients with Relapsed High-Grade Gliomas—Phase I Clinical Results. Journal of Neuro-Oncology, 98, 395-405.
[115] Jeung, T.S., Ma, S.Y., Yu, J. and Lim, S. (2013) Cases That Respond to Oncothermia Monotherapy. Conference Papers in Medicine, 2013, Article ID: 392480.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.