Share This Article:

An Overview of the Amazonian Craton Evolution: Insights for Paleocontinental Reconstruction

Full-Text HTML XML Download Download as PDF (Size:1558KB) PP. 1060-1076
DOI: 10.4236/ijg.2015.69084    4,426 Downloads   5,060 Views   Citations


The Amazonian craton major accretionary and collisional processes may be correlated to supercontinent assemblies developed at several times in the Earth history. Based on geologic, structural and paleomagnetic evidence paleocontinent reconstructions have been proposed for Archean to younger times. The oldest continent (Ur) was formed probably by five Achaean cratonic areas (Kaapvaal, Western Dhawar, Bhandara, Singhhum and Pilbara cratons). Geologic evidences suggest the participation of the Archaean rocks of the Carajás region in the Ur landmass. Supercontinental 2.45 Ga Kenorland amalgamation is indicated by paleomagnetic data including Laurentia, Baltica, Australia, and Kalahari and Kaapvaal cratons. There is no evidence indicating that Amazonian craton was part of the Kenorland supercontinent. From 1.83 Ga to 1.25 Ga Columbia and Hudsonland supercontinents including Amazonian craton were proposed based on NE portion of the Amazonian craton (Maroni/Itacaiunas province) connection with West Africa and Kalahari cratons. Rodinia supercontinent reconstructions show Amazonia joined to Laurentia-Baltica as result of 1.1 Ga to 1.0 Ga fusion based on the Sunsas-Aguapei belts and Greenville and Sveconorwegian belts, respectivelly. The large Late Mesoproterozoic landmass included also Siberia, East Antartica, West Nile, Kalahari, Congo/Sao Francisco and Greenland. The 750 - 520 Ma Gondwana assembly includes most of the continental fragments rifted apart during the break-up of Rodinia followed by diachronic collisions (Araguaia, Paraguay and Tucavaca belts). The supercontinent Pangea is comprised of Gondwana and Laurentia formed at about 300 - 180 Ma ago. The Amazonian craton margins probably were not envolved in the collisional processes during Pangea because it was embebed in Neoproterozoic materials. As consequence, Amazonian craton borders have no record of the orogenic processes responsible for the Pangea amalgamation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Geraldes, M. , Tavares, A. and Santos, A. (2015) An Overview of the Amazonian Craton Evolution: Insights for Paleocontinental Reconstruction. International Journal of Geosciences, 6, 1060-1076. doi: 10.4236/ijg.2015.69084.


[1] Bettencourt, J.S., Tosdal, R.M., Leite JR., W.B. and Payolla, B.L. (1999) Mesoproterozoic Rapakivi Granites of the Rondonia Tin Province, Southwestern Border of the Amazonian Craton, Brazil—I. Reconnaissance U-Pb Geochronology and Regional Implications. Precambrian Research, 95, 41-67.
[2] Tassinari, C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B. and Lafon, J.M. (2000) The Amazon Craton. In: Cordani, U., Milani, E.J., Thomaz Filho, A. and Campos, D.A., Eds., Tectonic Evolution of South America, 31st International Geological Congress, Rio de Janeiro, 41-95.)
[3] Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J. and Fletcher, I.R. (2000) A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Research, 3, 453-488.
[4] Klein, E.L. and Vasquez, M.L. (2000) Projeto Especial Província Mineral do Tapajós. Geologia e recursos minerais da folha SB.21-Z-A—Vila Riozinho, Estado do Pará, escala 1:250,000. Nota Explicativa. CPRM—Servico Geológico do Brasil (CD-ROM).
[5] Reis, N.J., Faria, M.S.G., Fraga, L.M.B. and Haddad, R.C. (2000) Orosirian Calc-Alkaline Volcanism and the Orocaima Event in the Northern Amazonian Craton, Eastern Roraima State, Brazil. Revista Brasileira de Geociências, 30, 380-383.
[6] Geraldes, M.C., Van Schmus, W.R., Condie, K.C., Bell, S., Teixeira, W. and Babinski, M. (2001) Proterozoic Geologic Evolution of the SW Part of the Amazonian Craton in Mato Grosso State, Brazil. Precambrian Research, 111, 91-128.
[7] Avelar, V.G. (2002) Geocronologia Pb-Pb em zircao e Sm-Nd em rocha total da porcao centro-norte do Estado do Amapá, Brasil: Implicacaes para a evolucao geodinamica do setor oriental do Escudo das Guianas. PhD Thesis, Universidade Federal do Pará.
[8] Lamarao, C.N., Dall’Agnol, R., Lafon, J.-M. and Lima, E.F. (2002) Geology, Geochemistry and Pb-Pb Zircon Geochronology of the Paleoproterozoic Magmatism of Vila Riozinho, Tapajós Gold Province, Amazonian Craton, Brazil. Precambrian Research, 119, 189-223.
[9] Vasquez, M.L., Ricci, P.S.F. and Klein, E.L. (2002) Granitóides pós-colisionais da porcaoleste da Província Tapajós. Contribuicaes à Geologia da Amazania, Sociedade Brasileira de Geologia, Belém, Vol. 3, 67-83.
[10] Cordani, U.G. and Teixeira, W. (2007) Proterozoic Accretionary Belts in the Amazonian Craton. In: Hatcher Jr., R.D., Carlson, M.P. and McBride, J.H., Eds., 4-D Framework of Continental Crust. Memoir 220, Geological Society of America, Boulder, CO, 297-320.
[11] Delor, C.,Lahondère, D., Egal, E., Lafon, J.M., Cocherie, A., Guerrot, C., Rossi, P., Trufert, C., Theveniaut, H., Phillips, D. and Avelar, V.G. (2003) Transamazonian Crustal Growth and Reworking as Revealed by the 1:500,000-Scale Geological Map of French Guiana (2nd Edition). Géologie de la France, 2-3-4, 5-57.
[12] Geraldes, M.C., Figueiredo, B.R., Tassinari, C.C.G. and Ebert, H.D. (1997) Middle Proterozoic Vein-Hosted Gold Deposits in the Pontes e Lacerda Region, Southwestern Amazonian Craton, Brazil. International Geology Review, 39, 438-448.
[13] Tohver, E., Teixeira, W., van der Plujm, B., Geraldes, M.C. and Bettencourt, J.S. (2004) Restored Transect across the Exhumed Grenville Orogen of Laurentia and Amazonia, with Implications for Crustal Architecture. Geology, 34, 669-672.
[14] Rosa-Costa, L.T., Lafon, J.M. and Delor, C. (No Prelo) Zircon Geochronology and Sm-Nd Isotopic Study: Further Constraints for the Archean and Paleoproterozoic Geodynamic Evolution of the Southeastern Guiana Shield, North of Brazil. Gondwana Research.
[15] Fraga, L.M. (2002) A associacao anortosito-mangerito-granito rapakivi (AMG) do Cinturao Guiana Central, Roraima, e suas encaixantes Paleoproterozóicas: Evolucao estrutural, geocronologia e petrologia. PhD Thesis, Universidade Federal do Pará, Belém, 351 p.
[16] Hoffman, P.F. (1991) Did the Breakout of Laurentia Turn Gondwanaland Inside Out? Science, 252, 1409-1412.
[17] Dalziel, I.W.D. (1992) On the Organization of American Plates in the Neoproterzoic and the Breakout of Laurentia. GSA Today, 2, 1-2.
[18] Dalziel, I.W.D. (1997) Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation. Geological Society of America Bulletin, 109, 16-42.<0016:ONPGAT>2.3.CO;2
[19] Moores, E.M. (1991) Southern US-East Antarctic (SWEAT) Connection: A Hypothesis. Geology, 19, 425-428.<0425:SUSEAS>2.3.CO;2
[20] Unrug, R. (1996) The Assembly of Gondwanaland. Episodes, 19, 11-20.
[21] Sadowski, G.R. and Bettencourt, J.S. (1996) Mesoproterozoic Tectonic Correlations between Eastern Laurentia and the Western Border of the Amazon Craton. Precambrian Research, 76, 213-227.
[22] Bettencourt, J.S., Onstot, T.C. and Teixeira, W. (1996) Tectonic Interpretation of 40Ar/39Ar Ages on Country Rocks from the Central Sector of the Rio Negro-Juruena Province, Southwest Amazonian Craton. International Geology Review, 38, 42-56.
[23] D’Agrella-Filho, M.S., Pacca, I.G., Elming, S.?., Teixeira, W., Bettencourt, J.S. and Geraldes, M.C. (2001) Preliminary Paleomagnetic Results from Metabasic and Sedimentary Rocks from the Amazonian Craton: Tectonic Implications for the Rodinia Supercontinent. In: Geology of the SW Amazonian Craton: State of the Art, 2001, Instituto de Geociencias—USP, S?o Paulo, 155-158.
[24] Tohver, E., Van der Pluijm, B.A., Van der Voo, R., Rizzoto, G. and Scandolara, J.E. (2005) Paleogeography of the Amazon Craton at 1.2 Ga: Early Grenvillian Collision with the Llano Segment of Laurentia. Earth and Planetary Science Letters, 199, 185-200.
[25] Pesonen, L.J., Elming, S.A., Mertanen, S., Pisarevsky, S., D’Agrella Filho, M.S., Meert, J.G., Schmidt, P.W., Abrahamsen, N. and Bylund, G. (2003) Paleomagnetic Configuration of Continents during the Proterozoic. Tectonophysics, 375, 289-324.
[26] Teixeira, W., Geraldes, M.C., D’Agrella-Filho, M.S., Santos, J.O.S. and Barros, M.A.S.A. (2011) Mesoproterozoic Juvenile Mafic-Ultramafic Magmatism in the SW Amazonian Craton (Rio Negro-Juruena Province): SHRIMP U-Pb Geochronology and Nd-Sr Constraints of the Figueira Branca Suite. Journal of South American Earth Sciences, 32, 309-323.
[27] Van der Voo, R. and Torsvik, T.H. (2001) Evidence for Late Paleozoic and Mesozoic Non-Dipole Fields Provides an Explanation for the Pangea Reconstruction Problems. Earth and Planetary Science Letters, 187, 71-81.
[28] Hoffman, P.F. (1989) Speculation on Laurentia’s First Gigayear (2,0 to 1,0 Ga). Geology, 17, 135-138.<0135:SOLSFG>2.3.CO;2
[29] Evans, D.A.D. (2003) True Polar Wander and Supercontinents. Tectonophysics, 362, 303-320. A Palaeomagnetic and 40Ar/39Ar Study of Late Precambrian Sills in the SW part of the Amazonian Craton: Amazonia in the Rodinia Reconstruction.
[30] Condie, K. (1989) Plate Tectonics and Crustal Evolution. Pergamon Press, Oxford, 476 p.
[31] Rogers, J.W. (1996) A History of Continents in the Past Three Billions Years. The Journal of Geology, 104, 91-107.
[32] Rogers, J.J.W. and Santosh, M. (2002) Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5, 5-22.
[33] Brito Neves, B.B. (2002) Main Stages of the Development of the Sedimentary Basins of South America and Their Relationship with the Tectonic of Supercontinents. Gondwana Research, 5, 175-196.
[34] Aspler, L.B. and Chiarenzelli, J.R. (1998) Two Neoarchean Supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geology, 120, 75-104.
[35] Ledru, P., Johan. V., Milési, J.P. and Tegyey, M. (1994) Markers of the Last Stages of the Paleoproterozoic Collision: Evidence for a 2 Ga Continent Involving Circum-South Atlantic Provinces. Precambrian Research, 69, 169-191.
[36] Tassinari, C.C.G. and Macambira, M.J.B. (1999) Geochronological Provinces of the Amazonian Craton. Episodes, 22, 174-182.
[37] Van Schmus, W.R., Geraldes, M.C., Fetter, A.H., Ruiz, A., Matos, J., Tassinari, C.C.G. and Teixeira, W. (1999) Jauru Terrane: A Late Paleoproterozoic Orogen in SW Amazon Craton, Mato Grosso State, Brazil. Journal of Conference Abstracts, 4, 129-130.
[38] Geraldes, M.C., Teixeira, W. and Van Schmus, W.R. (2000) Isotopic and Chemical Evidence for Three Accretioary Magmatic Arcs (1.79-1.42 Ga) in SW Amazon Craton, Mato Grosso Sate, Brazil. Brazilian Journal of Geology, 30, 99-101.
[39] Zhao, G., Sun, M., Wilde, S.A. and Li, S. (2004) A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Review, 67, 91-123.
[40] Ahall, K.-I., Connelly, J.N. and Brewer, T.S. (2000) Episodic Rapakivi Magmatism Due to Distal Orogenesis: Correlation of 1.69-1.50 Ga Orogenic and Inboard, “Anorogenic” Events in the Baltic Shield. Geology, 28, 823-826.<823:ERMDTD>2.0.CO;2
[41] Geraldes, M.C., Teixeira, W. and Heilbron, M. (2004) Lithospheric versus Asthenospheric Source of the SW Amazonian Craton A-Types Granites: The Role of the Paleo and Mesoproterozoic Accretionary Belts for Their Coeval Continental Suítes. Episodes, 27, 185-189.
[42] Dall’Agnol, R., Ramo, O.T., Magalh?es, M.S. and Macambira, M.J.B. (1999) Petrology of the Anorogenic, Oxidised Jamon and Musa Granites, Amazonian Craton: Implications for the Genesis of Proterozoic A-Type Granites. Lithos, 46, 431-462.
[43] Dall’Agnol, R., Teixeira, N.P., R?m?, O.T., Moura, C.A.V., Macambira, M.J.B. and Oliveira, D.C. (2005) Petrogenesis of the Paleoproterozoic Rapakivi A-Type Granites of the Archean Carajás Metallogenic Province, Brazil. Lithos, 80, 101-129.
[44] D’Agrella-Filho, M.S., Tohver, E., Santos, J.O.S., Elming, S.?., Trindade, R.I.F. and Geraldes, M.C. (2008) Direct Dating of Paleomagnetic Results from Precambrian Sediments in the Amazon Craton: Evidence for Grenvillian Emplacement of Exotic Crust in SE Appalachians of North America. Earth and Planetary Science Letters, 267, 188-199.
[45] Saes, G.S. (1999) Evolu??o Tect?nica e Paleogeográfica do AulacógenoAguapeí (1.2-1.0 Ga) e dos Terrenos do seu Embasamento na Por??o Sul do Cráton Amaz?nico. Unpublished Doctoraldissertation, Universidade de S?o Paulo, S?o Paulo, 135 p.
[46] Rizzotto, G.J. (1999) Petrologia e Ambiente Tect?nico do Grupo Nova Brasilandia-RO. Unpublished Master’s Dissertation, Universidade Federal do Rio Grando do Sul, Porto Alegre, 136 p.
[47] Geraldes, M.C., Figueiredo, B.R., Tassinari, C.C.G. and Ebert, H.D. (1997) Middle Proterozoic Vein-Hosted Gold Deposits in the Pontes e Lacerda Region, Southwestern Amazonian Craton, Brazil. International Geology Review, 39, 438-448.
[48] Litherland, M., Annels, R.N., Darbyshire, D.P.F., Fletcher, C.J.N., Hawkins, M.P., Klink, B.A., Mitchell, W.I., O’Connor, E.A., Pitfield, P.E.J., Power, G. and Webb, B.C. (1989) The Proterozoic of Eastern Bolivia and Its Relationship to the Andean Mobile Belt. Precambrian Research, 43, 157-174.
[49] Matos, R., Teixeira, W., Geraldes, M.C. and Bettencourt, J.S. (2009) Geochemistry and Nd-Sr Isotopic Signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, East Precambrian Shield of Bolívia: Petrogenetic Constraints for a Mesoproterozoic Magmatic Arc Setting. Geologia USP Série Científica, 9, 89-117.
[50] Meert, J.G. and Torsvik, T.H. (2003) The Making and Unmaking of a Supercontinent: Rodinia Revisited. Tectonophysics, 375, 261-288.
[51] Piper, J.D.A. (1975) Proterozoic Supercontinent: Time Duration and the Grenville Problem. Nature, 256, 519-520.
[52] Zhao, G., Sun, M., Wilde, S.A., Li, S. and Zhang, J. (2006) Some Key Issues in Reconstructions of Proterozoic Supercontinents. Journal of Asian Earth Sciences, 6, 123-143.
[53] Gower, C.F. and Tucker, R.D. (1994) Distribution of Pre-1400 Ma Crust in the Grenville Province: Implications for Rifting in Laurentia-Baltica during Geon 14. Geology, 22, 827-830.<0827:DOPMCI>2.3.CO;2
[54] Teixeira, W., Geraldes, M.C., Matos, R., Ruiz, A.S., Saes, G. and Vargas-Mattos, G. (2011) A Review of the Tectonic Evolution of the Sunsás Belt, SW Amazonian Craton. Journal of South American Earth Sciences, 29, 47-60.
[55] Rivers, T. (1997) Lithotectonic Elements of the Grenville Province: Review and Tectonic Implications. Precambrian Research, 86, 117-154.
[56] Larsen, S.A. (2000) The Sveconorwegian Tectonic Cycle Reviewed. IGC 2000, Rio de Janeiro, CD-Room.
[57] Jefferson, C.W. (1978) Correlation of Middle and Upper Proterozoic Strata between Northwestern Canada and Central Australia. Geologic Society of America Abstract Program 7, A429.
[58] Dalziel, I.W.D. (1991) Pacific Margin of Laurentia and East Antartica/Australia as a Conjugate Rift Pair: Evidence and Implications for an Eocambrian Supercontinent. Geology, 19, 598-601.<0598:PMOLAE>2.3.CO;2
[59] Van der Voo, R. and Torsvik, T.H. (2001) Evidence for Late Paleozoic and Mesozoic Non-Dipole Fields Provides an Explanation for the Pangea Reconstruction Problems. Earth and Palnetary Science Letters, 187, 71-81.
[60] Scandolara, J.E. and Amorim, J.L. (1999) A Faixa Móvel Guaporé, sua defini??o e inser??o no contexto geotect?nico do SWdo Craton Amaz?nico. In: SBG, Simp. Geol. Amaz., 6, Manaus, 1999. Anais..., Manaus, 278-281.
[61] Condie, K. (2004) Supercontinents and Superplume Events: Distinguishing Signals in the Geologic Record. Physics and Earth and Planetary Interiors, 146, 319-332.
[62] Brito Neves, B.B. and Cordani, U.G. (1991) Tectonic Evolution of South America during the Late Proterozoic. Precambrian Research, 53, 23-40.
[63] Weil, A.B., Van der Voo, R., Mac Niocaill, C. and Meert, J.G. (1998) The Proterozoic Supercontinent Rodinia: Paleomagnetically Derived Reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters, 154, 13-24.
[64] Brito Neves, B.B., Campos Neto, M.C. and Fuck, R. (1999) From Rodinia to Western Gondwana: An Approach to the Brasiliano-Pan-African Cycle and Orogenic Collage. Episodes, 22, 155-166.
[65] Almeida, F.F.M., Brito Neves, B.B. and Carneiro, C.D.R. (2000) The Origins and Evolution of the South American Platform. Earth Science Review, 50, 77-111.
[66] Alkmin, F.F., Marshak, S. and Fonseca, M.A. (2001) Assembling West Gondwana in the Neoproterozoic: Clues from the S?o Francisco Craton Region, Brazil. Geology, 29, 319.<0319:AWGITN>2.0.CO;2
[67] Meert, J.G. (2003) A Synopsis of Events Related to the Assembly of Eastern Gondwana. Tectonophysics, 362, 1-40.
[68] Pimentel, M.M. and Fuck, R.A. (1992) Neroproterozoic Crustal Accretion in Central Brazil. Geology, 29, 375.<0375:NCAICB>2.3.CO;2
[69] Babinski, M., Chemale Jr., F., Hartmann, L.A., Van Scmuss, W.R. and Silva, L.C. (1996) Juvenile Accretion at 750-700 Ma in Southern Brazil. Geology, 24, 439-442.<0439:JAAMIS>2.3.CO;2
[70] Trompette, R. (1994) Geology of Western Gondwana (2000-500): Pan-African-Brasiliano Aggregation of South America and Africa. Balkema, Rotterdam, 350 p.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.