Share This Article:

Some Important Features of Relativistic Charged Particles Produced in 32S-Emulsion Interactions at 200 AGeV/c

Full-Text HTML XML Download Download as PDF (Size:2093KB) PP. 1498-1509
DOI: 10.4236/jmp.2015.611154    2,654 Downloads   2,879 Views   Citations

ABSTRACT

An attempt has been made to study the multiplicity, angular and pseudo rapidity distributions of relativistic charged particles emerging from the interactions between sulphur and nuclear emulsion nuclei at 200 GeV/nucleon. The distributions from 200 AGeV are compared to the corresponding distributions from the predictions of Monte Carlo code FRITIOF samples. The pseudo rapidity distributions in different Nh-intervals translate to the target fragmentation region with increasing target mass. Finally, the scaling of multiplicity distributions of shower particles successfully describes the consequences of KNO scaling.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Rasool, M. , Ahmad, M. , Singh, O. and Ahmad, S. (2015) Some Important Features of Relativistic Charged Particles Produced in 32S-Emulsion Interactions at 200 AGeV/c. Journal of Modern Physics, 6, 1498-1509. doi: 10.4236/jmp.2015.611154.

References

[1] Kapusta, J. (1979) Nuclear Physics B, 148, 461.
http://dx.doi.org/10.1016/0550-3213(79)90146-9
[2] Kajantie, K. and Raitio, R. (1983) Physics Letters B, 121, 415.
http://dx.doi.org/10.1016/0370-2693(83)91189-9
[3] Andersson, B., Gustafson, G. and Nilsson-Almqvist, B. (1987) Nuclear Physics B, 281, 289.
http://dx.doi.org/10.1016/0550-3213(87)90257-4
[4] Nilson-Almquist, B. and Stenlund, E. (1987) Computer Physics Communications, 43, 387.
http://dx.doi.org/10.1016/0010-4655(87)90056-7
[5] Bradt, H.L. and Peters, B. (1948) Physical Review, 74, 1828-1839.
http://dx.doi.org/10.1103/PhysRev.74.1828
[6] Barashenkov, V.S., et al. (1959) Nuclear Physics, 14, 522-539.
http://dx.doi.org/10.1016/0029-5582(60)90471-5
[7] Powell, C.F., Flower, P.H. and Perkins, D.H. (1959) The Study of Elementary Particles by Photographic Method. Pargamon Press, London.
[8] Jokobsson, B. and Kullberg, R. (1976) Physica Scripta, 13, 327-333.
http://dx.doi.org/10.1088/0031-8949/13/6/002
[9] Chernov, G.M., et al. (1984) Nuclear Physics A, 412, 534-550.
http://dx.doi.org/10.1016/0375-9474(84)90535-9
[10] Andersson, B., et al. (1983) Physics Reports, 97, 31.
http://dx.doi.org/10.1016/0370-1573(83)90080-7
[11] Sjostrand, T. (1986) Computer Physics Communications, 39, 347-407.
http://dx.doi.org/10.1016/0010-4655(86)90096-2
[12] Antonchik, V.A., et al. (1980) Soviet Journal of Nuclear Physics, 32, 164-172.
[13] Bannik, B.P., Vokál, S., Leskin, V.A., Tolstov, K.D., Sumbera, M., Bubnov, V.I., et al. (1981) Czechoslovak Journal of Physics, 31, 490-498.
http://dx.doi.org/10.1007/BF01596415
[14] Ahmad, M.A., Rasool, M.H. and Ahmad, S. (2012) International Journal of Theoretical and Applied Physics, 2, 199-220.
[15] Jain, P.L., Sengupta, K. and Singh, G. (1991) Physical Review C, 44, 844-856.
http://dx.doi.org/10.1103/PhysRevC.44.844
[16] Ahmad, M.A. and Ahmad, S. (2012) Ukrainian Journal of Physics, 57, 1205-1213.
[17] Tariq, M. (1993) Some Characteristics of Projectile Fragments Produced in Interactions of Carbon and Silicon at 4.5 AGeV/c in Nuclear Emulsions. Ph.D. Thesis, Physics Department Aligarh Muslim University, Aligarh.
[18] Dabrowska, A., Holyński, R., Olszewski, A., Szarska, M., Trzupek, A., Wilczyńska, B., et al. (1993) Zeitschrift für Physik C Particles and Fields, 59, 399-403.
http://dx.doi.org/10.1007/BF01498620
[19] Tariq, M., Zafar, M., Tufail, A. and Ahmad, S. (1995) International Journal of Modern Physics E, 4, 347-370.
http://dx.doi.org/10.1142/S0218301395000109
[20] Zhang, D.-H., Zhao, H.-H., Liu, F., He, C.-L., Jia, H.-M., Li, X.-Q., et al. (2007) Chinese Physics, 16, 2689.
[21] Otterlund, I., Stenlund, E., Andersson, B., Nilsson, G., Adamovic, O., Juric, M., et al. (1978) Nuclear Physics B, 142, 445-462.
http://dx.doi.org/10.1016/0550-3213(78)90223-7
[22] Koba, Z., Nielsen, H.B. and Olesen, P. (1972) Nuclear Physics B, 40, 317-334.
http://dx.doi.org/10.1016/0550-3213(72)90551-2
[23] Feynman, R.P. (1969) Physical Review Letters, 23, 1415-1417.
http://dx.doi.org/10.1103/physrevlett.23.1415
[24] Liu, F.-H. (2003) Chinese Journal of Physics, 41, 486.
[25] El-Nadi, M., Sherif, M.M., Hegab, M.K., Hussien, A., Fakeha, A.A. and Jilany, M.A. (1995) Il Nuovo Cimento A, 108, 281-288.
http://dx.doi.org/10.1007/BF02787055
[26] Sherif, M.M., Hegab, M.K., Abdelsalam, A., El-Sharkawy, S.A. and Tawfik, A.M. (1993) International Journal of Modern Physics E, 2, 835-843.
http://dx.doi.org/10.1142/S0218301393000388
[27] Liu, F.-H. (2000) Physical Review C, 62, Article ID: 024613.
http://dx.doi.org/10.1103/PhysRevC.62.024613
[28] Ghosh, D., Mukhopadhyay, A., Ghosh, A., Sengupta, R. and Roy, J. (1989) Nuclear Physics A, 499, 850-860.
http://dx.doi.org/10.1016/0375-9474(89)90067-5
[29] Gurtu, A., Malhotra, P.K., Mittra, I.S., Sood, P.M., Gupta, S.C., Gupta, V.K., et al. (1974) Physics Letters B, 50, 391-395.
http://dx.doi.org/10.1016/0370-2693(74)90698-4
[30] Burnett, T.H., Dake, S., Fuki, M., Gregory, J.C., Hayashi, T., Holynski, R., et al. (1983) Physical Review Letters, 50, 2062-2065.
http://dx.doi.org/10.1103/PhysRevLett.50.2062

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.