Detection of nucleic acid of classical swine fever virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP)
Kanokwan Wongsawat, Tararaj Dharaku, Phairot Narat, Jundee Rabablert
.
DOI: 10.4236/health.2011.37074   PDF    HTML     4,784 Downloads   9,935 Views   Citations

Abstract

Classical swine fever virus (CSFV) is the causative agent of Classical swine fever which is a highly contagious disease affecting swine and resulting in severe economic losses. In this study, we developed reverse transcription loopmediated isothermal amplification (RT-LAMP) assay targeting the 5’UTR gene for the detection of CSFV. This amplification method can be obtained in 1 h under isothermal conditions (65°C) employing a set of six specific primers mixtures. Amplification product was visualized by using hydroxynaphthol blue (HNB) dye and agarose gel electrophoresis. The sensitivity was 100 copy numbers. No cross-reactivity related to Japanese encephalitis virus (JEV) and porcine reproductive and respiratory syndrome virus (PRRSV) was demonstrated. The results demonstrated that the RT-LAMP assay is a useful tool for the rapid and sensitive for CSFV detection in swine.

Share and Cite:

Wongsawat, K. , Dharaku, T. , Narat, P. and Rabablert, J. (2011) Detection of nucleic acid of classical swine fever virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Health, 3, 447-452. doi: 10.4236/health.2011.37074.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Edwards, S., Fukusho, A., Lefèvre, P.C., Lipowski, A., Pejsak, Z., Roehe, P. and Westergaard, J. (2000) Classical swine fever: The global situation. Veterinary Microbiology, 73, 103-119. doi:10.1016/S0378-1135(00)00138-3
[2] Lowings, P., Ibata, G., Needham, J. and Paton, D. (1996) Classical swine fever virus diversity and evolution. Jour- nal of General Virology, 77, 1311-1321. doi:10.1099/0022-1317-77-6-1311
[3] Stadejek, T., Vilcek, S., Lowings, J.P., Pordany, A.B., Paton, D.J. and Belak, S. (1997) Genetic heterogeneity of classical swine fever virus in Central Europe. Virus Research, 52, 195-204. doi:10.1016/S0168-1702(97)00118-4
[4] Kaden, V., Lange, E., Müller, T., Teuffert, J., Teifke, J.P. and Riebe, R. (2006) Protection of gruntlings against classical swine fever virus-infection after oral vaccination of sows with C-strain vaccine. Journal of Veterinary Medicine, Series B, 53, 455-460. doi:10.1111/j.1439-0450.2006.00993.x
[5] Suradhat, S., Kesdangsakonwut, S., Sada, W., Buranapraditkun, S., Wongsawang, S. and Thanawongnuwech, R. (2006) Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccine. Vaccine, 24, 2634-2642. doi:10.1016/j.vaccine.2005.12.010
[6] Damrongwatanapokin, S., Pinyochon, W., Parchariyanon, S. and Inui, K. (1999) Classical Swine Fever and Emer- ging Diseases in Southeast Asia. Proceedings of an International Workshop of the Australian Centre for International Agricultural Research, 94, 109-110.
[7] Paton, D.J., McGoldrick, A., Greiser-Wilke, I., Parchariyanon, S., Song, J.Y., Liou, P.P., Stadejek, T., Lowings, J.P., Bjoèrklund, H. and Bela?k, S. (2000) Genetic typing of classical swine fever virus. Veterinary Microbiology, 73, 137-157. doi:10.1016/S0378-1135(00)00141-3
[8] Moennig, V., Niesmann, G.F. and Wilke, I.G. (2003) Clinical signs and epidemiology of classical swine fever. The Veterinary Journal, 165, 11-20 doi:10.1016/S1090-0233(02)00112-0
[9] Clavijo, A., Zhou, E.M., Vydelingum, S. and Heckert, R. (1998) Development and evaluation of a novel antigen capture assay for the detection of classical swine fever virus antigens. Veterinary Microbiology, 60, 155-168. doi:10.1016/S0378-1135(98)00160-6
[10] Zupanci?, Z., Juki?, B., Lojki?, M., Cac, Z., Jemersi?, L. and Staresina, V. (2002) Prevalence of antibodies to classical swine fever, Aujeszky’s disease, porcine reproductive and respiratory syndrome, and bovine viral diarrhoea viruses in wild boars in Croatia. Journal of Veterinary Medicine, Series B, 49, 253-256. doi:10.1046/j.1439-0450.2002.00562.x
[11] Risatti, G.R., Callahan, J.D., Nelson, W.M. and Borca, M.V. (2003) Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay. Journal of Clinical Microbiology, 41, 500-505. doi:10.1128/JCM.41.1.500-505.2003
[12] Handel, K., Kehler, H., Hills, K. and Pasick, J. (2004) Comparison of reverse transcriptase polymerase chain reaction, virus isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strains of classical swine fever virus. Journal of Veterinary Diagnostic Investigation, 16, 132-138. doi:10.1177/104063870401600207
[13] Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. (2000) Loop mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63. doi:10.1093/nar/28.12.e63
[14] Mori, Y., Nagamine, K., Tomita, N. and Notomi, T. (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289, 150-154. doi:10.1006/bbrc.2001.5921
[15] Pham, H.M., Nakajima, C., Ohashi, K. and Onuma, M. (2005) Loop-mediated isothermal amplification rapid detection of Newcastle disease virus. Journal of Clinical Microbiology, 43, 1646-1650.
[16] Iwamoto, T., Sonobe, T. and Hayashi, K. (2003) Loop- mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. Journal of Clinical Microbiology, 41, 2616-2622. doi:10.1128/JCM.41.6.2616-2622.2003
[17] Hong, T.C., Mai, Q.L., Cuong, D.V., Parida, M., Minekawa, H., Notomi, T., Hasebe, F. and Morita1 K. (2004) Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology, 42, 1956-1961.
[18] Parida, M.M., Santhosh, S.R., Dash, P.K., Tripathi, N.K., Saxena, P., Ambuj, S., Sahni, A.K., Lakshmana Rao, P.V. and Morita, K. (2006) Development and evaluation of reverse transcription-loop-mediated isothermal amplification assay for rapid and real-time detection of Japanese encephalitis virus. Journal of Clinical Microbiology, 44, 4172-4178. doi:10.1128/JCM.01487-06
[19] En, F.X., Wei, X., Jian, L. and Qin, C. (2008) Loop-me- diated isothermal amplification establishment for detection of pseudorabies virus. Journal of Virological Methods, 151, 35-39. doi:10.1016/j.jviromet.2008.03.028
[20] Chen, H.T., Zhang, J., Ma, L.N., Ma, Y.P., Ding, Y.Z., Liu, X.T., Chen, L., Ma, L.Q., Zhang, Y.Q. and Liu, Y.S. (2009) Rapid pre-clinical detection of classical swine fever by reverse transcription loop-mediated isothermal amplification. Molecular and Celularl Probes, 23, 71-74. doi:10.1016/j.mcp.2008.12.001
[21] Yin, S., Shang, Y., Zhou, G., Tian, H., Liu, Y., Cai, X. and Liu, X. (2010) Development and evaluation of rapid detection of classical swine fever virus by reverse transcription loop-mediated isothermal amplification (RT- LAMP). Journal of Biotechnology, 146, 147-150. doi:10.1016/j.jbiotec.2009.11.006
[22] Zhang, X.J., Sun, Y., Liu, L., Belák, S. and Qiu, H.J. (2010) Validation of a loop-mediated isothermal amplification assay for visualised detection of wild-type classical swine fever virus. Journal of Virological Methods, 167, 74-78. doi:10.1016/j.jviromet.2010.03.013
[23] Gachon, C., Mingam, A. and Charrier, B. (2004) Real-time PCR: What relevance to plant studies. Journal of Experimental Botany, 55, 1445-1454. doi:10.1093/jxb/erh181
[24] Ito, A. and Ueno, K. (1970) Successive chelatometric titration of calcium and magnesium using hydroxy naphthol blue (HNB) indicator. Japan Analyst, 19, 393-397.
[25] Goto, M., Honda, E., Ogura, A., Nomoto, A. and Hanaki, K. (2009) Colorimetric detection of loop mediated isothermal amplification reaction by using hydroxy naphthol blue. Bio Techniques, 46, 167-172. doi:10.2144/000113072
[26] Krumbholz, A., Wurm, R., Scheck, O., Birch-Hirschfeld, E., Egerer, R., Henke, A., Wutzler, P. and Zell, R. (2003) Detection of porcine teschoviruses and enteroviruses by LightCycler real-time PCR. Journal of Virological Methods, 113, 51-63. doi:10.1016/S0166-0934(03)00227-1
[27] Rovira, A., Balasch, M., Segales, J., Garcia, L., Plana-Duran, J., Rosell, C., Ellerbrok, H., Mankertz, A. and Domingo, M. (2002) Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. Journal of Virology, 76, 3232-3239.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.