Calculation of the Zeeman-Fine Energies and the Spectrum with Doppler-Shift Correction of Atomic Lithium

.
DOI: 10.4236/jmp.2011.27087   PDF   HTML   XML   3,657 Downloads   6,959 Views  

Abstract

We have calculated the Zeeman-fine energies of atomic Lithium (Li) by using the varying effective Landé g-factor method. We take the principle quantum number in the range; (2 ≤n ≤10 ). For this range we find 26 different energy values and 325 wavelengths some of which are the same. The Doppler shift is found to be Δλ=±0.004λ. The Doppler shift-corrected wavelengths are in perfect agreement with the observed (NIST) values for atomic Li.

Share and Cite:

L. Babsail, L. Bousiakou, S. Alsaleh and M. Saglam, "Calculation of the Zeeman-Fine Energies and the Spectrum with Doppler-Shift Correction of Atomic Lithium," Journal of Modern Physics, Vol. 2 No. 7, 2011, pp. 752-758. doi: 10.4236/jmp.2011.27087.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. J. Mohr, B. N. Taylor and D. B. Newel,"CODATA recommended values of the fundamental physical constants: 2006" Reviews of Modern Physics Vol 80 2008, pp 633-730
[2] R.C. Hilborn,“Einstein Coefficients, cross sections, f values, dipole moments and all that” ,Am. J. of Phys. Vol 50, 1982, pp. 982-986
[3] D. J. Aurie and L. N. Adolph,“Lange's Handbook of Chemistry’’ ,McGraw-Hill, 1998
[4] W. D. Phillips, “Laser cooling and trapping of neutral atoms”, Nobel Lecture, December 8, 1997
[5] D. E. Pritchard, “Cooling neutral atoms in a magnetic trap for precision spectroscopy” ,Phys. Rev. Letters Vol 51 1983, pp 1336-1339
[6] B. C., Sanders, “Entangled coherent states”, Phys. Rev. A Vol 45, 1992, pp. 6811-6815
[7] A. Griffin, D. W. Snoke and S. Stringari, “Bose Einstein Condensation”, Cambridge University Press (1995)
[8] L. G. Boussiakou, C.R. Bennett and M. Babiker, “Electrodynamics of Bose Einstein Condensates in angular motion”, Journal of Optics B, Vol 4, 2002, pp.S25-S32
[9] Z. Saglam, S. B. Bayram and M. Saglam, “Calculation of the effective g-factor for the ( ) ( ) ( ) transitions in Hydrogen-like atoms and its application to the atomic Cesium,” J. Mod. Phys.Vol.1, 2010, pp. 399-404 .
[10] G. Sahin and M. Saglam, “ Calculation of the magnetic moment of Photon,” Journal of Physics: Conference Series, Vol.194, 2009,pp.22006.
[11] M. Saglam and G. Sahin, “ Photon in the current loop model,” Int. J.of Mod. Phys. Vol.23(24),2009, pp. 4977-85.
[12] M. Saglam and B. Boyacioglu, “The absence of decimal g-factor in QHE systems,” Physica Status Solidi B, Vol.230, No.1, 2002,pp133-142.
[13] M. Saglam, “ Flux quantization associated with electron spin for correlated electron system in QHE ,” Physica E, Vol.17, 2003, pp.345-346.
[14] NIST Atomic Spectra Database: http://physics.nist.gov/asd
[15] M. Saglam, Z. Saglam, B. Boyacioglu and K. K. Wan, “ Quantized magnetic flux through the excited-state orbits of hydrogen atom,” Journal of Russian Laser Research, Vol. 28, No.3, 2007, pp.267-271.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.