Share This Article:

Imaging and Therapeutic Applications of Optical and Thermal Response of SPION-Based Third Generation Plasmonic Nanodendrimers

Abstract Full-Text HTML XML Download Download as PDF (Size:1737KB) PP. 212-226
DOI: 10.4236/opj.2015.57021    3,583 Downloads   4,004 Views   Citations

ABSTRACT

In this study, 9 nm superparamagnetic iron oxide nanoparticles (SPION) were functionalized by polyamidoamine (PAMAM) dendrimer. Using tetracholoroauric acid (HAuCl4), magnetodendrimer (MD) samples were conjugated by gold nanoparticles (Au-NPs). Two different reducing agents, i.e. sodium borohydride and hydrazine sulfate, and pre-synthesized 10-nm Au-NP were used to evaluate the efficiency of conjugation method. The samples were characterized using X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy and fluorescence spectroscopy. The results confirmed that Au- NPs produced by sodium borohydrate and the pre-synthesized 10-nm Au-NPs were capped by MDs whereas the Au-NP prepared by hydrazine sulfate as a reducing agent was entrapped by MDs. Optical properties of the MDs were studied by laser-induced fluorescence spectroscopy (LIF) within a wide range of visible spectrum. Also, based on the thermal analysis, all synthesized nanostructures exhibited a temperature increase using 488 nm and 514 nm wavelengths of a tunable argon laser. The new iron oxide-dendrimer-Au NPs synthesized by sodium borohydrate (IDA- NaBH4) produced the highest temperature increase at 488 nm whereas the other nanostructures particularly pure Au-NPs produced more heating effect at 514 nm. These findings suggest the potential application of these nanocomposites in the field of bioimaging, targeted drug delivery and controlled hyperthermia.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Tajabadi, M. , Khosroshahi, M. and Bonakdar, S. (2015) Imaging and Therapeutic Applications of Optical and Thermal Response of SPION-Based Third Generation Plasmonic Nanodendrimers. Optics and Photonics Journal, 5, 212-226. doi: 10.4236/opj.2015.57021.

References

[1] Pankhurst, Q., Connolly, J., Jones, S. and Dobson, J. (2003) Applications of Magnetic Nanoparticles in Biomedicine. Journal Physics D: Applied Physics, 36, 167-181.
http://dx.doi.org/10.1088/0022-3727/36/13/201
[2] Berry, C. and Curties, A. (2003) Functionalization of Magnetic Nanoparticles for Applications in Biomedicine. Journal Physics D: Applied Physics, 36, 198-206.
http://dx.doi.org/10.1088/0022-3727/36/13/203
[3] Khosroshahi, M.E. and Nourbakhsh, M. (2011) In Vitro Skin Wound Soldering Using SiO2/Au Nanoshells and a Diode Laser. Medical Laser Application, 26, 35-42. http://dx.doi.org/10.1016/j.mla.2010.06.001
[4] Wang, Y., Xie, X. and Goodson, T. (2005) Enhanced Third-Order Nonlinear Optical Properties in Dendrimer-Metal Nanocomposites. Nano Letter, 5, 2379-2384. http://dx.doi.org/10.1021/nl051402d
[5] Shi, X., Wang, S., Shen, M., Antwerp, M. and Chen, X. (2009) Multifunctional Dendrimer-Modified Multiwalled Carbon Nanotubes: Synthesis, Characterization, and in Vitro Cancer Cell Targeting and Imaging. Biomacromolecules, 10, 1744-1750. http://dx.doi.org/10.1021/bm9001624
[6] Stemmler, M., Stefani, F., Bernhardt, S., Bauer, R. and Kreiter M. (2009) One-Pot Preparation of Dendrimer—Gold Nanoparticle Hybrids in a Dipolar Aprotic Solvent. Langmuir, 25, 12425-12428.
http://dx.doi.org/10.1021/la902354e
[7] Thompson, D., Hermes, J., Quinn, A. and Mayor, M. (2012) Scanning the Potential Energy Surface for Synthesis of Dendrimer-Wrapped Gold Clusters: Design Rules for True Single-Molecule Nanostructures. ACS Nano, 6, 3007-3017. http://dx.doi.org/10.1021/nn204470g
[8] Baffou, G. and Quidan, R. (2013) Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser & Photonics Reviews, 7, 171-187. http://dx.doi.org/10.1002/lpor.201200003
[9] Hassannejad, Z. and Khosroshahi, M.E. (2013) Synthesis and Evaluation of Time Dependent Optical Properties of Plasmonic—Magnetic Nanoparticles. Optical Materials, 35, 644-651.
http://dx.doi.org/10.1016/j.optmat.2012.10.019
[10] Esumi, K., Houdatsu, H. and Yoshimur, T. (2004) Antioxidant Action by Gold-PAMAM Dendrimer Nanocomposites. Langmuir, 20, 2536-2538. http://dx.doi.org/10.1021/la036299r
[11] Wang, X., Haung, Sh., Shan, Z. and Yang, W. (2009) Preparation of Fe3O4 @Au Nano-Composites by Self-Assembly Technique for Immobilization of Glucose Oxidase. Chinese Science Bulletin, 54, 1176-1181. http://dx.doi.org/10.1007/s11434-009-0113-7
[12] Khosroshahi, M. E. and Ghazanfar, L. (2012) Physicochemical Characterization of Fe3O4/SiO2/Au Multilayer Nanostructure. Materials Chemistry Physics, 133, 55-62.
http://dx.doi.org/10.1016/j.matchemphys.2011.12.047
[13] Shi, X., Sun, K. and Baker Jr., J.R. (2009) Spontaneous Formation of Functionalized Dendrimer-Stabilized Gold Nanoparticles. The Journal of Physical Chemistry C, 112, 8251-8258.
http://dx.doi.org/10.1021/jp801293a
[14] Shen, M. and Shi, X. (2010) Dendrimer-Based on Organic/Inorganic Hybrid Nanoparticles in Biomedical Applications. Nanoscale, 2, 1596-1610. http://dx.doi.org/10.1039/c0nr00072h
[15] Majoros, I., Myc, A., Thomas, T., Mehta, C. and Baker, J. (2006) PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality. Biomacromolecules, 7, 572-579. http://dx.doi.org/10.1021/bm0506142
[16] Syahir, A., Tomizaki, K., Kajikawa, K. and Mihara, H. (2009) Poly(Amidoamine)-Dendrimer Modified Gold Surfaces for Anomalous Reflection of Gold to Detect Biomolecular Interactions. Langmuir, 25, 3667-3674. http://dx.doi.org/10.1021/la8028275
[17] Choi, S., Myc, A., Silpe, J., Sumit, M., Wong, P. and McCarthy, K. (2012) Dendrimer-Based Multivalent Vancomycin Nanoplatform for Targeting the Drug-Resistant Bacterial Surface. ACS Nano, 7, 214-228.
http://dx.doi.org/10.1021/nn3038995
[18] Al-Jamal, K., Al-Jamal, W., Wang, J., Rubio, N. and Buddle, J. (2013) Cationic Poly-L-Lysine Dendrimer Complexes Doxorubicin and Delays Tumor Growth In-vitro and In-Vivo, ACS Nano,7, 1905-1917.
http://dx.doi.org/10.1021/nn305860k
[19] Venditto, V., Regino, C. A. and Brechbiel, M. (2005) PAMAM Dendrimer Based Macromolecules as Improved Contrast Agents. Molecular Pharmacutics, 2, 302-311. http://dx.doi.org/10.1021/mp050019e
[20] Bronstein, L. and Shifrina, L. (2011) Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles. Chemical Reviews, 111, 5301-5344. http://dx.doi.org/10.1021/cr2000724
[21] Garcia, M. and Baker, L. (1998) Crooks Preparation and Characterization of Dendrimer—Gold Colloid Nanocomposites. Analytical Chemistry, 71, 256-258. http://dx.doi.org/10.1021/ac980588g
[22] Esumi, K., Matsumoto, T., Seto, Y. and Yoshimura,T. (2005) Preparation of Gold-Gold/Silver-Dendrimer Nanocomposites in the Presence of Benzoin in Ethanol by UV Irradiation. Journal Colloid Interface Science, 284, 199-203. http://dx.doi.org/10.1016/j.jcis.2004.09.020
[23] Hoffman, L.W., Andersson, G., Sharma, A., Clarke, S. and Voelcker, N. (2011) New Insigh into the Structure of PAMAM Dendrimer/Gold Nanoparticle Nanocomposites. Langmuir, 27, 6759-6767.
http://dx.doi.org/10.1021/la1050964
[24] Sardar, R., Funston, A., Mulvaney, P. and Murray, R. (2009) Gold Nanoparticles: Past, Present, and Future. Langmuir, 25, 13840-13851. http://dx.doi.org/10.1021/la9019475
[25] Li, Z., Huang, P., Zhang, X., Lin, J., Yang, S. and Liu, B. (2009) RGD-Conjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Pherapy. Molecular Pharmaceutics, 7, 94-104. http://dx.doi.org/10.1021/mp9001415
[26] Khosroshahi, M.E. and Nourbakhsh, M. (2010) Preparation and Characterization of Self Assembled Gold Nanoparticles on Amino Functionalized SiO2 Dielectric Core. World Academy of Science, Engineering and Technology, 64, 353-356.
[27] Tajabadi, M. and Khosroshahi, M.E. (2012) Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH. International Journal Chemical Engineering Applications, 3, 206-210. http://dx.doi.org/10.7763/IJCEA.2012.V3.187
[28] Tajabadi, M., Khosroshahi, M.E. and Bonakdar, S. (2013) An Efficient method of SPION Synthesis Coated With Third Generation PAMAM Dendrimer, Colloids Surface A: Physicochem Engineering Aspects, 431, 18-26. http://dx.doi.org/10.1016/j.colsurfa.2013.04.003
[29] Okugaichi, A., Torigoe, K., Yoshimura, T. and Esumi, K. (2006) Interaction of Cationic Gold Nanoparticles and Carboxylate-Terminated Poly(Amidoamine) Dendrimers. Colloids and Surfaces A: Physicochem Engineering Aspects, 273, 154-160. http://dx.doi.org/10.1016/j.colsurfa.2005.08.028
[30] Balogh, L., Valluzzi, R., Laverdure, K., Gido, S., Hagnauer, G. and Tomalia, D. (1999) Formation of Silver and Gold Dendrimer Nanocomposites. Journal Nanoparticle Research, 1, 353-368.
http://dx.doi.org/10.1023/A:1010060404024
[31] He, J., Valluzzi, R., Yang, K., Dolukhanyan, T., Sung, C., Kumar, J. and Tripathy J. (1999) Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite. Chemisrty of Materials, 11, 3268-3274.
http://dx.doi.org/10.1021/cm990311c
[32] Balogh, L. and Tomalia, D. (1998) Poly(Amidoamine) Dendrimer-Templated Nanocomposites. Synthesis of Zero Valent Copper Nanoclusters. Journal of American Chemical Society, 120, 7355-7356.
http://dx.doi.org/10.1021/ja980861w
[33] Zhao, M., Sun, L. and Crooks, R. (1998) Preparation of Cu Nanoclusters within Dendrimer Templates. Journal of American Chemical Society, 120, 4877-4878. http://dx.doi.org/10.1021/ja980438n
[34] Satoh, K., Yoshimura, T. and Esumi, K. (2002) Effects of Various Thiol Molecules Added on Morphology of Dendrimer—Gold Nanocomposites. Journal of Colloid Interface Science, 255, 312-322.
http://dx.doi.org/10.1006/jcis.2002.8585
[35] Shi, X., Ganser, T., Sun, K. and Baker Jr., J.R. (2006) Characterization of Crystalline Dendrimer-Stabilized Gold Nanoparticles. Nanotechnology, 17, 1072-1078.
http://dx.doi.org/10.1088/0957-4484/17/4/038
[36] Kim, Y., Oh, S. and Crooks,R. (2003) Preparation and Characterization of 1 - 2 nm Dendrimer-Encapsulated Gold Nanoparticles Having Very Narrow Size Distributions. Chemistry of Materials, 16, 167-172. http://dx.doi.org/10.1021/cm034932o
[37] Mosseri, S., Henglein, A. and Janata, E. (1989) Reduction of Dicyanoaurate(I) in Aqueous Solution: Formation of Nonmetallic Clusters and Colloidal Gold. Journal of Physical Chemistry, 93, 6791-6795.
http://dx.doi.org/10.1021/j100355a042
[38] Divsar, F., Nomani, A., Chaloosi, M. and Haririan, I. (2009) Synthesis and Characterization of Gold Nanocomposites with Modified and Intact Polyamidoamine Dendrimers. Microchimica Acta, 165, 421-426. http://dx.doi.org/10.1007/s00604-009-0156-0
[39] Jiang, G., Wang, Y. and Sun, X. (2010) Fluence on Fluorescence Properties of Hyperbranched Poly(Amidoamine)s by Nano Golds. Journal of Polymer Science Polymer Physics, 48, 2386-2391.
http://dx.doi.org/10.1002/polb.22137
[40] Zhang, Z., Rong, F., Niu, S., Xie, Y., Wang, Y., Yang, H. and Fu, D. (2010) Investigation the Effects of Nano Golds on the Fluorescence Properties of the Sectorial Poly(Amidoamine) (PAMAM) Dendrimers. Applied Surface Science, 256, 7194-7199. http://dx.doi.org/10.1016/j.apsusc.2010.05.049
[41] Westcott, S., Oldenburg, S., Lee, T. and Halas, N. (1998) Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. Langmuir, 14, 5396-5401.
http://dx.doi.org/10.1021/la980380q
[42] Zheng, J., Petty, J. and Dickson, R. (2003) High Quantum Yield Blue Emission from Water-Soluble Au-Nanodots. Journal of American Chemical Society, 125, 7780-7781. http://dx.doi.org/10.1021/ja035473v
[43] Torigoe, K., Suzuki, A. and Esumi, K. (2001) Au(III)-PAMAM Interaction and Formation of Au-PAMAM Nanocomposites in Ethyl Acetate. Journal of Colloid Interface Science, 241, 346-356.
http://dx.doi.org/10.1006/jcis.2001.7778
[44] Arias, J., Gallardo, V., Gómez-Lopera, S., Plaza, R. and Delgado, A. (2001) Synthesis and Characterization of Poly(ethyl-2-Cyanoacrylate) Nanoparticles With a Magnetic Core. Journal of Control Release, 77, 309-321. http://dx.doi.org/10.1016/S0168-3659(01)00519-3
[45] Wu, C., Yu, C. and Chu, M. (2011) A Gold Nanoshell with a Silica Inner Shell Synthesized Using Liposome Templates for Doxorubicin Loading and Near-Infrared Photothermal Therapy. International Journal of Nanomedicine, 6, 807-813.
[46] Streszewski, B., Jaworski, W., Paclawski, K., Csapó E, Dékány, I. and Fitzner, K. (2012) Gold Nanoparticles Formation in the Aqueous System of Gold(III) Chloride Complex Ions and Hydrazine Sulfate-Kinetic Studies. Colloids Surface A: Physicochemical Engineering Aspects, 397, 63-72.
http://dx.doi.org/10.1016/j.colsurfa.2012.01.031
[47] Faiyas, A., Vinod, E., Joseph, J., Ganesan, R. and Pandey, R. (2009) Dependence of pH and Surfactant Effect in the Synthesis of Magnetite (Fe3O4) Nanoparticles and Its Properties. Journal of Magnetism and Magnetic Materials, 322, 400-404. http://dx.doi.org/10.1016/j.jmmm.2009.09.064
[48] Esumi, K., Suzuki, A., Yamahira, A. and Torigoe, K. (2000) Role of Poly(Amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver. Langmuir, 16, 2604-2608.
http://dx.doi.org/10.1021/la991291w
[49] Grabchev, I., Bojinov, V. and Chovelon, J. M. (2003) Synthesis, Photophysical and Photochemical Properties of Fluorescent Poly(Amidoamine) Dendrimers. Polymer, 44, 4421-4428.
http://dx.doi.org/10.1016/S0032-3861(03)00407-5
[50] Li, J., Chen, Q. and Yang, L. (2010) The Synthesis of Dendrimer Based on the Dielectric Barrier Discharge Plasma Grafting Amino Group Film. Surface Coating Technology, 205, S257-S260.
http://dx.doi.org/10.1016/j.surfcoat.2010.07.083
[51] Chou, C. and Lien, H. (2009) Dendrimer-Conjugated Magnetic Nanoparticles for Removal of Zinc (II) From Aqueous Solutions. Journal of Nanoparticles Resesearch, 13, 2099-2107.
http://dx.doi.org/10.1007/s11051-010-9967-5
[52] Baykal, A., Toprak, M., Durmus, Z., Senel, M., Sozeri, H. and Demir, A. (2012) Synthesis and Characterization of Dendrimer-Encapsulated Iron and Iron-Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 25, 1541-1549.
http://dx.doi.org/10.1007/s11051-010-9967-5
[53] Klajnart, B. and Bryszewska, M. (2002) Fluorescence Studies on PAMAM Dendrimers Interactions With Bovine Serum Albumin. Bioelectrochemistry, 55, 33-35.
http://dx.doi.org/10.1016/S1567-5394(01)00170-0
[54] Lee, K. and El-Sayed, M. (2005) Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index. Journal of Physical Chemistry B, 109, 20331-20338.
http://dx.doi.org/10.1021/jp054385p
[55] Jain, P., Lee, K., El-Sayed, I. and El-Sayed, M. (2006) Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. Journal of Physical Chemistry B, 110, 7238-7248. http://dx.doi.org/10.1021/jp057170o
[56] Govorov, A.O. and Richardson, H. (2007) Generating Heat with Wetal Nanoparticles. Nano Today, 2, 30-38. http://dx.doi.org/10.1016/S1748-0132(07)70017-8
[57] Huang, X., Jain, P., El-Sayed, I. and El-Sayed, M. (2008) Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles. Lasers Medical Science, 23, 217-228. http://dx.doi.org/10.1007/s10103-007-0470-x
[58] Baffou, G., Quidant, R. and García de Abajo, F. (2010) Nanoscale Control of Optical Heating in Complex Plasmonic Systems. ACS Nano, 4, 709-716. http://dx.doi.org/10.1021/nn901144d
[59] Ghazanfari, L., and Khosroshahi, M.E. (2014) Simulation and Experimental Results of Optical and Thermal Modeling of Gold Nanoshells. Materials Science and Engineering C, 42, 185-191.
http://dx.doi.org/10.1016/j.msec.2014.05.002
[60] Sassaroli, E., Li, K. and Neill, B. (2009) Numerical Investigation of Heating of a Gold Nanoparticle and the Surrounding Microenvironment by Nanosecond Laser Pulses for Nanomedicine Applications. Physics in Medicine and Biology, 54, 5541. http://dx.doi.org/10.1088/0031-9155/54/18/013
[61] Baffou, G. and Rigneault, H. (2011) Femtosecond-Pulsed Optical Heating of Gold Nanoparticles. Physical Review B, 84, Article ID: 035415. http://dx.doi.org/10.1103/PhysRevB.84.035415
[62] Baffou, G., Quidant, R. and Girard, C. (2009) Heat Generation in Plasmonic Nanostructures: Influence of Morphology. Applied Physics Letters, 94, Article ID: 153109.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.