Effects of extracellular matrix proteins on expansion, proliferation and insulin-producing-cell differentiation of ARIP cells

Abstract

Regeneration of transplantable pancreatic islet cells has been considered to be a promising alternative therapy for type 1 diabetes. Re-search has suggested that adult pancreatic stem and progenitor cells can be derived into insulin-producing cells or cultivated islet-like clusters given appropriate stimulating condi- tions. In this study we explored the effect of selective extracellular matrix (ECM) proteins on the potential of insulin-producing cell differen-tiation using ARIP cells, an adult rat pancreatic ductal epithelial cell line, as a model in vitro. Quantitative single cell morphology analysis indicated that all the four ECM proteins we have used (type I collagen, laminin, fibronectin and vitronectin) increased the single cell area and diameter of ARIP cells. In addition, se-rum-free cell cultivation was dependent on cell density and particular components; and serum could be replaced when systematic optimisa-tion could be performed. Surface treated with laminin was shown to be able to enhance overall cell expansion in the presence of de-fined serum-free medium conditions. Collagen treated surfaces enhanced insulin production in the presence of GLP-1 although the insulin gene expression was however weak accord-ingly. Our results suggest that selective ECM proteins have effects on single cell morphol-ogy, adhesion and proliferation of ARIP cells. These ECM molecules however do not have a potent effect on the insulin-producing cell dif-ferentiation potential of ARIP cells even com-bining with GLP-1.

Share and Cite:

Adams, G. and Cui, Y. (2009) Effects of extracellular matrix proteins on expansion, proliferation and insulin-producing-cell differentiation of ARIP cells. Journal of Biomedical Science and Engineering, 2, 216-226. doi: 10.4236/jbise.2009.24035.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. T. M. Baharloo and D. Brunette, (2005) Substratum roughness alters the growth, area, and focal adhesions of epithelial cells, and their proximity to titanium surfaces, J Biomed Mater Res A, 74, 12-22.
[2] S. B. Weir, L. A. Baxter, G. T. Schuppin, and F. E. Smith, (1993) A second pathway for regeneration of adult exo-crine and endocrine pancreas: A possible recapitulation of embryonic development, Diabetes, 42, 1715-1720.
[3] S. T. B. Weir, M. Weir, G. C. Tatarkiewicz, K. Song, K. H. Sharma, and A. O'Neil, (2000) In vitro cultivation of human islets from expanded ductal tissue, Proc Natl Acad Sci, 97, 7999-8004.
[4] A. H. Bulotta, H. Anastasi, E. Bertolotto, C. Boros, L. G. Di Mario, U. Perfetti, R. Silver, K. Yao, F. Zenilman, M. E. Chen, and T. H. Magnuson, (2002) Cultured pancre-atic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1, J Mol Endocrinol, 29, 347-360.
[5] A. P. Bulotta, H. R. Hui, and L. G. Boros, (2003) GLP-1 stimulates glucose-derived de novo fatty acid synthesis and chain elongation during cell differentiation and insu-lin release, J. Lipid Res, 44, 1559-1565.
[6] L. A. Chen, M. C. Alam, T. Miyaura, C. Sestak, A. O'Neil, J. Unger, and C. B. Newgard, (1992) Factors regulating islet regeneration in the post-insulinoma NEDH rat, Adv Exp.Med Biol, 321, 71-80, 81-74.
[7] L. B. Chen, X. B. Jiang, and L. Yang, (2004) Differentia-tion of rat marrow mesenchymal stem cells into pancre-atic islet beta-cells, World J Gastroenterol, 10, 3016- 3020.
[8] B. S. Chertow, N. Q. Goking, and H. K. Driscoll, (1997) Effects of all-trans-retinoic acid (ATRA) and retinoic acid receptor (RAR) expression on secretion, growth, and apoptosis of insulin-secreting RINm5F cells, Pancreas, 15, 122-31.
[9] E. A. Clark and J. S. Brugge, (1995) Integrins and signal transduction pathways: The road taken, Science, 268, 233-239.
[10] W. G. R. Ding, E. Rorsman, P. Buschard, and J. K. Gro-mada, (1997) Glucagon-like peptide I and glucose- de-pendent insulinotropic polypeptide stimulate Ca2+ in-duced secretion in rat alpha-cells by a protein kinase A-mediated mechanism, Diabetes, 46, 792-800.
[11] H. C. S. Fehmann, M. and Goke, B. (1994) Interaction of glucagon-like peptide-I (7-37) and somatostatin-14 on signal transduction and proinsulin gene expression in beta TC-1 cells, Metabolism, 43, 787-792.
[12] P. Feugier, R. A. Black, J. A. Hunt, and T. V. How, (2005) Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress, Biomaterials, 26, 1457-1466.
[13] R. U. Gao, J. Pulkkinen, M. A. Lundin, K. Korsgren, and T. Otonkoski, (2007) Characterization of endocrine pro-genitor cells and critical factors for their differentiation in human adult pancreatic cell culture, Diabetes, 52, 2003-2015.
[14] D. H. Gefel, G. K. Mojsov, S. Habener, and G. C. Weir, (1990) Glucagon-like peptide-I analogs: effects on insu-lin secretion and adenosine 3’,5’-monophosphate forma-tion, Endocrinology, 126, 2164-2168.
[15] H. Hui, C. Wright, and R. Perfetti, (2001) Glucagon-like peptide 1 induces differentiation of islet duodenal ho-meobox-1-positive pancreatic ductal cells into insu-lin-secreting cells, Diabetes, 50, 785-96.
[16] N. W. Jessop, (1980) Characteristics of two rat pancre-atic exocrine cell lines derived from transplantable tu-mors, In vitro, 16, 212.
[17] F. X. Jiang, (2005) Laminin-1 and epidermal growth factor family members costimulate fetal pancreas cell proliferation and colony formation, Differentiation, 73, 45-49.
[18] F. X. C. Jiang, D. S. DeAizpurua, and L. C. Harrison, (1999) Laminin-1 promotes differentiation of fetal mouse pancreatic beta-cells, Diabetes, 48, 722-730.
[19] F. X. Jiang and L. C. Harrison, (2001) Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan, Mol Med, 7, 107-114.
[20] C. Q. Lin, (1993) Multi-faceted regulation of cell differ-entiation by extracellular matrix, Faseb, 7, 737-743.
[21] H. K. G. Liu, B. D. Gault, V. A. McCluskey, J. T. McClenaghan, N. H. O’Harte, and P. R. Flatt, (2004) N-acetyl-GLP-1: A DPP IV-resistant analogue of gluca-gon-like peptide-1 (GLP-1) with improved effects on pancreatic beta-cell-associated gene expression, Cell Biol Int., 28, 69-73.
[22] M. W. Lu, M. B. Leng, and A. E. Boyd, (1993 The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glu-cagonlike peptide I (7-37), Endocrinology, 132, 94-100.
[23] T. S. C. Maldonado, C. A. Kadison, A. S. Alkasab, S. L. Longaker, and G. K. Gittes, (2000) Basement membrane exposure defines a critical window of competence for pancreatic duct differentiation from undifferentiated pancreatic precursor cells, Pancreas, 21, 93-96.
[24] C. Miyaura, L. Chen, M. Appel, T. Alam, L. Inman, S. Hughes, D. Milburn, J. L. Unger, and C. B. Newgard, (1991) Expression of reg/PSP, a pancreatic exocrine gene: relationshipto changes in islet beta-cell mass, Mol Endo-crinol, 5, 226-234.
[25] N. S. N. Nagata, T. Mitaka, T. Katakai, T. Yamato, E. Miyazaki, J. Tabata, Y. Sugai, and A. Shimizu, (2004) In vitro induction of adult hepatic progenitor cells into insu-linproducing cells, Biochem Biophys Res Commun, 318, 625-630.
[26] C. O. Welsh, (2001) Long-term culture in matrigel en-hances the insulin secretion of fetal porcine islet-like cell clusters in vitro, Pancreas, 22, 157-163.
[27] D. S. Oda, C. E. Nguyen, T. D. Swenson, and S. P. Lee, (1998) Culture of human main pancreatic duct epithelial cells, In Vitro Cell Dev Biol Anim, 34, 211-216.
[28] T. Otonkoski, G. M. Beattie, M. I. Mally, C. Ricordi, and A. Hayek, (1993) Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancre-atic cells, J Clin Invest, 92, 1459-1466.
[29] T. Otonkoski, J. Ustinov, M. A. Huotari, E. Kallio, and P. Hayry, (1997) Nicotinamide and sodium butyrate for the induction of fetal porcine beta-cell differentiation prior to transplantation, Transplant Proc,29, 2045.
[30] R. A. H. Perfetti, (2004) The role of GLP-1 in the life and death of pancreatic beta cells, Horm Metab Res, 36, 804-810.
[31] K. A. S. D. Preissner, (1998) Role of vitrGonectin and its receptors in haemostasis and vascular remodeling, Thromb Res, 89, 1-21.
[32] R. P. Rafaeloff, G. L. Barlow, S. W. Qin, X. F. Yan, B. Rosenberg, L. Duguid, and A. I. Vinik, (1997) Cloning and sequencing of the pancreatic islet neogenesis associ-ated protein (INGAP) gene and its expression in islet neogenesis in hamsters, J Clin Invest, 99, 2100-2109.
[33] L. Rosenberg, (1995) In vivo cell transformation: neo-genesis of beta cells from pancreatic ductal cells, Cell Transplant, 4, 371-383.
[34] L. Rosenberg, R. Rafaeloff, , D. Kakugawa, Y. Pittenger, A. I. G. Vinik, and W. P. Duguid, (1996) Induction of is-let cell differentiation and new islet formation in the hamster-further support for a ductular origin, Pancreas, 13, 38-46.
[35] E. A. P. Ruoslahti, (1987) New perspectives in cell adhe-sion: RGD and integrins, Science, 238, 491-497.
[36] K. A. Y. F. Silver, (2001) ARIP cells as a model for pan-creatic beta cell growth and development, Pancreas, 22, 141-147.
[37] S. E. Sipione, A. Lyon, J. G. Korbutt, and R. C. Bleack-ley, (2004) Insulin expressing cells from differentiated embryonic stem cells are not beta cells, Diabetologia.
[38] A. N. H. Suzuki and H. Taniguchi, (2003) Glucagon-like peptide 1 (1-37) converts intestinal epithelial cells into insulin-producing cells, Proc Natl Acad Sci U S A, 100, 5034-5039.
[39] G. L. Teitelman and D. J. Reis, (1987) Differentiation of prospective mouse pancreatic islet cells during develop-ment in vitro and during regeneration, Dev Biol, 120, 425-433.
[40] K. Terazono, H. Yamamoto, S. Takasawa, K. Shiga, Y. Yonemura, Y. Tochino, and H. Okamoto, (1988) A novel gene activated in regenerating islets, J Biol Chem, 263, 2111-2114.
[41] B. Thorens, (1992) Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone gluca-gon-like peptide 1, Proc Natl Acad Sci U S A, 89, 8641-8645.
[42] B. E. A. O. Tuch, (1990) Maturation of insulinogenic response to glucose in human fetal pancreas with retinoic acid, Horm Metab Res Suppl, 25, 233-238.
[43] T. R. Y. Ulich, E. S. Cardiff, R. Yin, S. Bikhazi, N. Biltz, R. Morris, and G. F. Pierce, (1994) Keratinocyte growth factor is a growth factor for mammary epithelium in vivo: The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor, Am J Pathol, 144, 862-868.
[44] R. N. K. Wang, and L. Bouwens, (1995) Ductto islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats, Diabetologia, 38, 1405-1411.
[45] E. S. Y. Yi, S. Harclerode, D. L. Bedoya, A. Bikhazi, N. B. Housley, R. M. Aukerman, S. L.Morris, C. F. Pierce, and T. R. Ulich, (1994) Keratinocyte growth factor in-duces pancreatic ductal epithelial proliferation, Am J Pathol, 145, 80-85.
[46] M. E. C. Zenilman and T. H. Magnuson, (1998) Effect of reg protein on rat pancreatic ductal cells, Pancreas, 17, 256-261.
[47] J. W. Zhou, X. Pineyro, and J. M. Egan, (1999) Gluca-gon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon and insulin-producing cells, Diabetes, 48, 2358-2366.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.