Share This Article:

Synchronization of Impulsive Real and Complex Van der Pol Oscillators

Abstract Full-Text HTML XML Download Download as PDF (Size:698KB) PP. 922-932
DOI: 10.4236/am.2015.66084    2,654 Downloads   2,964 Views  

ABSTRACT

Nonlinear systems involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems, for example, many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, population dynamics, etc., do exhibit impulsive effects. In a recent paper [1], both real and complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit cycles and in [2] an active control and chaos synchronization was introduced. In this paper, impulsive synchronization for the real and complex Van der Pol oscillators is systematically investigated. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set of initial conditions, the differences between the master and slave systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Al-Qahtani, A. , Khenous, H. and Aly, S. (2015) Synchronization of Impulsive Real and Complex Van der Pol Oscillators. Applied Mathematics, 6, 922-932. doi: 10.4236/am.2015.66084.

References

[1] Mahmoud, G.M., Aly, S.A. and Farghaly, A.A. (2004) Chaos Control of Chaotic Limit Cycles of Real and Complex Van der Pol Oscillators. Chaos, Solitons and Fractals, 21, 915-924.
http://dx.doi.org/10.1016/j.chaos.2003.12.039
[2] Farghaly, A.A. (2007) An Active Control for Chaos Synchronization of Real and Complex Van der Pol Oscillators. International Journal of Modern Physics C, 18, 795-804.
http://dx.doi.org/10.1142/S0129183107010565
[3] Mahmoud, G.M., Aly, S.A. and Al-Kashif, M.A. (2008) Dynamical Properties and Chaos Synchronization of a New Chaotic Complex Nonlinear System. Nonlinear Dynamics, 51, 171-181.
http://dx.doi.org/10.1007/s11071-007-9200-y
[4] Mahmoud, G.M., Rauh, A. and Mohamed, A.A. (2001) Applying Chaos Control to a Modulated Complex Nonlinear Systems. Il Nuovo Cimento, 116B, 113-126.
[5] Liao, T.L. and Lin, S.H. (1999) Adaptive Control and Synchronization of Lorenz Systems. Journal of the Franklin Institute, 336, 925-937. http://dx.doi.org/10.1016/S0016-0032(99)00010-1
[6] Pecora, L. and Carroll, T. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824. http://dx.doi.org/10.1103/PhysRevLett.64.821
[7] Mahmoud, G.M., Al-Kashif, M.A. and Aly, S.A. (2007) Basic Properties and Chaotic Synchronization of Complex Lorenz System. International Journal of Modern Physics C, 18, 235-265.
http://dx.doi.org/10.1142/S0129183107010425
[8] Mahmoud, G.M. and Aly, S.A. (2000) Periodic Attractors of Complex Damped Nonlinear Systems. International Journal of Non-Linear Mechanics, 35, 309-323.
http://dx.doi.org/10.1016/S0020-7462(99)00016-5
[9] Liao, T.L. (1998) Adaptive Synchronization of Two Lorenz Systems. Chaos, Solitons and Fractals, 9, 1555-1561. http://dx.doi.org/10.1016/S0960-0779(97)00161-6
[10] Yorke, J.A. and Yorke, E.D. (1979) The Transition to Sustained Chaotic Behavior in the Lorenz Model. Journal of Statistical Physics, 21, 263-277. http://dx.doi.org/10.1007/BF01011469
[11] Fowler, A.C., Gibbon, J.D. and McGuinnes, M.J. (1983) The Real and Complex Lorenz Equations and Their Relevance to Physical Systems. Physica D: Nonlinear Phenomena, 7, 126-134.
http://dx.doi.org/10.1016/0167-2789(83)90123-9
[12] Mahmoud, G.M., Bountis, T. and Mahmoud, E.E. (2007) Active Control and Global Synchronization of the Complex Chen and Lü Systems. International Journal of Bifurcation and Chaos, 17, 4295-4308.
[13] Lu, J.N., Wu, X.Q. and Li, J.H. (2002) Synchronization of a Unified System and the Application in Secure Communication. Physics Letters A, 305, 365-370. http://dx.doi.org/10.1016/S0375-9601(02)01497-4
[14] Mahmoud, G.M., Rauh, A. and Mohamed, A.A. (1999) On Modulated Complex Nonlinear Dynamical Systems. Il Nuovo Cimento, 114B, 31-47.
[15] Ott, E., Grebogi, C. and Yorke, J.A. (1990) Controlling Chaos. Physical Review Letters, 64, 1196-1199. http://dx.doi.org/10.1103/PhysRevLett.64.1196
[16] Ning, C.Z. and Haken, H. (1990) Detuned Lasers and the Complex Lorenz Equations-Subcritical and Supercritical Hopf Bifurcations. Physical Review A, 41, 3827-3837.
http://dx.doi.org/10.1103/PhysRevA.41.3826
[17] Vladimirov, A.G., Toronov, V.Y. and Derbov, V.L. (1998) The Complex Lorenz Model: Geometric Structure, Homoclinic Bifurcations and One-Dimensional Map. International Journal of Bifurcation and Chaos, 8, 723-729. http://dx.doi.org/10.1142/S0218127498000516
[18] Jones, C.A., Weiss, N.D. and Cataeno, F. (1985) Nonlinear Dynamos: A Complex Generalization of the Lorenz Equations. Physica D: Nonlinear Phenomena, 14, 161-176.
http://dx.doi.org/10.1016/0167-2789(85)90176-9
[19] George, P. (1989) New Exact Solutions of the Complex Lorenz Equations. Journal of Physics A, 22, 137-141. http://dx.doi.org/10.1088/0305-4470/22/5/001
[20] Roberts, P.H. and Glazmaier, G.A. (2000) Geodynamo Theory and Simulations. Reviews of Modern Physics, 72, 1083-1123. http://dx.doi.org/10.1103/RevModPhys.72.1081
[21] Panchev, S. and Vitanov, N.K. (2005) On Asymptotic Properties of Some Complex Lorenz-Like Systems. Journal of Calcutta Mathematical Society, 1, 181-190.
[22] Toronov, V.Y. and Derbov, V.L. (1997) Boundedness of Attractors in the Complex Lorenz Model. Physical Review E, 3, 3689-3692. http://dx.doi.org/10.1103/PhysRevE.55.3689
[23] Lakshmikantham, V., Bainov, D. and Simeonov, P. (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore.
[24] Yang, T., Yang, L.-B. and Yang, C.-M. (1997) Impulsive Control of Lorenz System. Physica D: Nonlinear Phenomena, 110, 18-24. http://dx.doi.org/10.1016/S0167-2789(97)00116-4
[25] Chen, S.H., Yang, Q. and Wang, C.P. (2004) Impulsive Control and Synchronization of Unified Chaotic System. Chaos, Solitons & Fractals, 20, 751-758.
[26] Richter, H. (2001) Controlling the Lorenz System: Combining Global and Local Schemes. Chaos, Solitons and Fractals, 12, 2375-2380.
[27] Kongas, O., Herttzen, R.V. and Engelbrecht, J. (1999) Bifurcation Structure of a Periodically Driven Nerve Pulse Equation Modeling Cardiac Conduction. Chaos, Solitons and Fractals, 10, 119-136.
http://dx.doi.org/10.1016/S0960-0779(98)00056-3
[28] Stewart, I. (2000) The Lorenz Attractor Exists. Nature, 406, 948-949.
[29] Hayashi, C. (1964) Nonlinear Oscillations in Physical Systems. McGraw-Hill, New York.
[30] Thompson, J.M.T. and Stewart, H.B. (1986) Nonliinear Dynamics and Chaos, Wiley, New York.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.