Effect of Annealing Temperature on Prepared Nanoparticles Li-Ferrite Using Positron Annihilation Lifetime Technique

Abstract Full-Text HTML XML Download Download as PDF (Size:500KB) PP. 436-444
DOI: 10.4236/msa.2015.65047    4,709 Downloads   5,360 Views   Citations

ABSTRACT

Lithium ferrite nanoparticles were synthesized by a sol-gel auto-combustion method. For prepared samples, the nanograins were increased with increasing the annealing temperature. Positron annihilation lifetime spectroscopy (PALS) was used to study defects at different sites for nanograins Li-ferrites. The analysis of the PAL spectrum indicated two lifetime components τ1 and τ2 for the annihilation of the positrons, and their corresponding relative intensities I1% and I2%. For nanoparticles Li-ferrite there are correlations between: 1) I2, τ2, annealing temperature and the total porosity (Pt) with the grain size; 2) I1, μi, Ms and the homogeneity with grain size.

Cite this paper

Samy, A. and Aly, E. (2015) Effect of Annealing Temperature on Prepared Nanoparticles Li-Ferrite Using Positron Annihilation Lifetime Technique. Materials Sciences and Applications, 6, 436-444. doi: 10.4236/msa.2015.65047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Baba, P.D., Argentina, G.M., Courney, W.E., Dionne, G.F. and Temme, D.H. (1972) Fabrication and Properties of Microwave Lithium Ferrites. IEEE Transactions on Magnetics, 8, 83-94.
http://dx.doi.org/10.1109/TMAG.1972.1067269
[2] George, M., Nair, S.S., John, A.M., Joy, P.A. and Anantharaman, M.R. (2006) Structural, Magnetic and Electric Properties of the Sol-Gel Prepar Li0.5Fe2.5O4 Fine Particles. Journal of Physics D: Applied Physics, 39, 900-910.
http://dx.doi.org/10.1088/0022-3727/39/5/002
[3] Dionne, G.F. (1997) Properties of Ferrites at Low Temperatures (Invited). Journal of Applied Physics, 81, 5064-5069.
http://dx.doi.org/10.1063/1.364509
[4] Majetich, S.A. and Sachan, M. (2006) Magnetostatic Interaction in Magnetic Nanoparticle Assemblies: Energy, Time and Length Scales. Journal of Physics D: Applied Physics, 39, R407-R422.
http://dx.doi.org/10.1088/0022-3727/39/21/r02
[5] Yang, H., Wang, Z., Song, L., Zhao, M., Wang, J. and Luo, H. (1996) A Study on the Coercivity and Magnetic Anisotropy of the Lithium Ferrite Nanocrystallite. Journal of Physics D: Applied Physics, 29, 2574-2578.
http://dx.doi.org/10.1088/0022-3727/29/10/008
[6] Goya, G.F., Berquo, T.S., Fonseca, F.C. and Morales, M.P. (2003) Static and Dynamic Magnetic Properties of Spherical Magnetic Nanoparticles. Journal of Applied Physics, 94, 3520-3528.
http://dx.doi.org/10.1063/1.1599959
[7] Kodama, R.H. (1999) Magnetic Nanoparticle. Journal of Magnetism and Magnetic Materials, 200, 359-372.
http://dx.doi.org/10.1016/S0304-8853(99)00347-9
[8] Batlle, X. and Labarta, A. (2002) Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. Journal of Physics D: Applied Physics, 35, R15-R42.
http://dx.doi.org/10.1088/0022-3727/35/6/201
[9] Shirsath, S.E., Kadam, R.H., Gaikwad, A.S., Ghasemi, A. and Morisalo, A. (2011) Effect of Sintering Temperature and the Particle Size on the Structural and Magnetic Properties of Nanocrystalline Li0.5Fe2.5O4. Journal of Magnetism and Magnetic Materials, 323, 3104-3108.
http://dx.doi.org/10.1016/j.jmmm.2011.06.065
[10] Jovic, N., Antic, B., Goya, G.F. and Spasojevic, V. (2012) Magnetic Properties of Lithium Ferrite Nanoparticles with a Core/Shell Structure. Current Nanoscience, 8, 1-8.
http://dx.doi.org/10.2174/157341312802884391
[11] Kechrakos, D. and Trohidou, K.N. (1998) Magnetic Properties of Dipolar Interacting Single-Domain Particles. Physical Review B, 58, 12169-12177.
http://dx.doi.org/10.1103/PhysRevB.58.12169
[12] Sahoo, S.C., Venkataramani, N., Shiva, P., Murtaza, B. and Krishnan, R. (2010) Pulse Laser Deposited Nanocrystalline Cobalt Ferrite Thin Films. Journal of Nanoscience and Nanotechnology, 10, 3112-3117.
http://dx.doi.org/10.1166/jnn.2010.2173
[13] Han, Y.C., Cha, H.G., Kim, C.W., Ji, E.S., Kim, Y.H., Kang, D.I. and Kang, Y.S. (2009) The Influence of Low Temperature on Gamma-Ray Irradiated Permanent Magnets. Journal of Nanoscience and Nanotechnology, 9, 6953-6956.
http://dx.doi.org/10.1166/jnn.2009.1622
[14] Zhang, Y., Fei, C., Liu, Y., Wang, R., Yan, G., Xiong, R. and Shi, J. (2010) The Effect of Surface Modification on the Magnetic Properties of CoFe2O4 Nano-Particles Synthesized by the Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 10, 6395-6399.
http://dx.doi.org/10.1166/jnn.2010.2518
[15] Rai, A. and Banerjee, M. (2008) XRD and Mossbauer Spectroscopy Investigation of Mn Substituted CuFe2O4 Nanoparticles. Journal of Nanoscience and Nanotechnology, 8, 4172-4175.
http://dx.doi.org/10.1166/jnn.2008.AN28
[16] Pathak, T.K., Buch, J.J.U., Trivedi, U.N., Joshi, H.H. and Modi, K.B. (2008) Infrared Spectroscopy and Elastic Properties of Nanocrystalline Mg-Mn Ferrites Prepared by Co-Precipitation Technique. Journal of Nanoscience and Nanotechnology, 8, 4181-4187.
http://dx.doi.org/10.1166/jnn.2008.AN33
[17] Deka, S. and Joy, P.A. (2008) Superparamagnetic Nanocrystalline ZnFe2O4 with a Very High Curie Temperature. Journal of Nanoscience and Nanotechnology, 8, 3955-3958.
http://dx.doi.org/10.1166/jnn.2008.201
[18] Raming, T.P., Winnubst, A.J.A., Van Kats, C.M. and Philipse, P. (2002) The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles. Journal of Colloid and Interface Science, 249, 346-350.
http://dx.doi.org/10.1006/jcis.2001.8194
[19] Agami, W.R., Ashmawy, M.A. and Sattar, A.A. (2014) Structural, IR, and Magnetic Studies of Annealed Li-Ferrite Nanoparticles. Journal of Materials Engineering and Performance, 23, 604-610.
http://dx.doi.org/10.1007/s11665-013-0754-1
[20] Somoza, A. (2001) Status of Positron Annihilation Studies of Age Hardening in Aluminum Alloys. Materials Science Forum, 363-365, 9-14.
http://dx.doi.org/10.4028/www.scientific.net/MSF.363-365.9
[21] Misheva, M., Djourelov, N., Margaca, F.M.A. and Miranda Salvado, I.M. (2000) Positronium Decay Study of Zirconia-Silica Sol-Gels. Journal of Non-Crystalline Solids, 272, 209-217.
http://dx.doi.org/10.1016/S0022-3093(00)00153-8
[22] Hautojarvi, P., Corbel, C., Dupasquier, A. and Mills, A.P. (1995) Positron Spectroscopy of Solids. IOS Press, Amsterdam.
[23] Fradin, J., Thome, T., Grynszpan, R.I., Thome, L., Anwand, W. and Brauer, G. (2001) Precursory Stage of Damage Production in Argon Irradiated Cubic Zirconia. Nuclear Instruments and Methods in Physics Research Section B, 175-177, 516-520.
http://dx.doi.org/10.1016/S0168-583X(00)00643-1
[24] Ghosh, S., Nambissan, P.M.G. and Bhattacharya, R. (2004) In3+ Substitution Effects and Defect Distribution in Li0.25Mg0.5Mn0.1Fe2.15-xInxO4 Studied by Positron Annihilation and Mossbauer Spectroscopy. Physica B: Condensed Matter, 353, 75-81.
http://dx.doi.org/10.1016/j.physb.2004.09.003
[25] Cullity, B.D. and Stock, S.R. (2001) Elements of X-Ray Diffraction. 3rd Edition, Prentice-Hall, Inc., New York.
[26] Kansy, J. (1996) Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra. Nuclear Instruments and Methods in Physics Research Section A, 374, 235-244.
[27] Hautojarvi, P. (1979) Positrons in Solids. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-81316-0
[28] Samy, A.M., Mostafa, N. and Gomaa, E. (2006) Effect of Rare Earth Substitutions on Some Physical Properties of Mn-Zn Ferrite Studied by Positron Annihilation Lifetime Spectroscopy. Journal Applied Surface Science, 252, 3323- 3326.
http://dx.doi.org/10.1016/j.apsusc.2005.08.102
[29] Samy, A.M., Gomaa, E. and Mostafa, N. (2010) Study the Properties of Cu-Zn Ferrite Substituted with Rare Earth Ions by Positron Annihilation Analysis. The Open Ceramic Science Journal, 1, 1-4.
http://dx.doi.org/10.2174/1876395201001010001
[30] Jiang, J., Yang, Y.M. and Li, L.C. (2008) Effect of Heat Treatment on the Magnetic Properties of Nanocrystalline Spinel Li-Ni Ferrite Prepared by a Simple Soft Chemistry Route. Journal of Alloys and Compounds, 464, 370-373.
http://dx.doi.org/10.1016/j.jallcom.2007.09.128
[31] Aly, E.H. and Samy, A.M. (2015) A Study of Some Properties for Substituted Li-Ferrite Using Positron Annihilation Lifetime Technique. Results in Physics, 5, 80-84.
http://dx.doi.org/10.1016/j.rinp.2015.03.001
[32] Jovic, N.G., Masadeh, A.S., Kremenovic, A.S., Antic, B.V., Blanusa, J.L., Cvjeticanin, N.D., Goya, G.F., Vittori, A.M. and Bozin, E.S. (2009) Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles. The Journal of Physical Chemistry C, 113, 20559-20567.
http://dx.doi.org/10.1021/jp907559y
[33] Jovic, N., Antic, B., Gerardo, F.G. and Spasojevic, V. (2012) Magnetic Properties of Lithium Ferrite Nanoparticles with a Core/Shell Structure. Current Nanoscience, 8, 651-658.
http://dx.doi.org/10.2174/157341312802884391
[34] El-sayed, M.H., Samy, A.M. and Sattar, A.A. (2004) Infra-Red and Magnetic Studies of Nb-Doped Li-Ferrites. Physica Status Solidi (A), 201, 1-7.
http://dx.doi.org/10.1002/pssa.200406818
[35] Samy, A.M. (2011) Magnetic and Electrical Studies of V, Cd and Gd Ions Substituted Li-Ferrite. Journal of Materials Science and Engineering with Advanced technology, 4, 133-147.
http://scientificadvances.co.in
[36] Shirsath, S.E., Kadam, R.H., Gaikwad, A.S., Ghasemi, A. and Morisako, A. (2011) Effect of Sintering Temperature and the Particle Size on the Structural and Magnetic Properties of Nanocrystalline Li0.5Fe2.5O4. Journal of Magnetism and Magnetic Materials, 323, 3104-3108.
http://dx.doi.org/10.1016/j.jmmm.2011.06.065

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.