Share This Article:

DNA Nano Devices as a Biased Random Walk Process: A Case Study of Isothermal Ratchet?

Abstract Full-Text HTML XML Download Download as PDF (Size:1714KB) PP. 401-419
DOI: 10.4236/msa.2015.65045    2,845 Downloads   3,466 Views   Citations

ABSTRACT

Computation and amplification processes based on Networks of Chemical Reactions are at the heart of our understanding of the regulation and error correction of life systems. The recent advances in DNA nanotechnology, with the creation of the modular structures origamis and the development of dynamical networks using the toe hold mediated strand displacement, open fertile areas to construct Hierarchical Cascades of Chemical Reactions with an increasing complexity inspired from systems in biology. DNA strands have the great advantage to design autonomous and homogeneous Networks of Chemical Reactions leaving aside companion chemical reactions as it occurs in biological systems. In the present paper, we use the Fokker Planck equation to extract predictions that address a wider class of systems beyond the case of diluted solutions. We introduce the concept of toehold strength and output strength that leads to an exponential square dependence of the toehold strength divided by the output strength on the escape rate and the probability for the output strand to leave the gate. We highlight the influence of the boundary conditions that may have an important consequence in confined environment when modular structures like origamis are employed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Aimé, J. and Elezgaray, J. (2015) DNA Nano Devices as a Biased Random Walk Process: A Case Study of Isothermal Ratchet?. Materials Sciences and Applications, 6, 401-419. doi: 10.4236/msa.2015.65045.

References

[1] Seeman, N.C. (2003) DNA in a Material World. Nature, 421, 427-430.
http://dx.doi.org/10.1038/nature01406
[2] Rothemund, P.W.K. (2006) Folding DNA to Create Nanoscale Shapes and Patterns. Nature, 440, 297-302.
http://dx.doi.org/10.1038/nature04586
[3] Dongran, H., Suchetan, P., Liu, Y. and Yan, H. (2010) Folding and Cutting DNA into Reconfigurable Topological Nanostructures. Nature Nanotechnology, 5, 712.
http://dx.doi.org/10.1038/nnano.2010.193
[4] Douglas, S.M., Bachelet, I. and Church, G.M. (2012) A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science, 335, 831-834.
http://dx.doi.org/10.1126/science.1214081
[5] Yang, Y., Masayuki, E., Hidaka, K. and Sugiyama, H. (2012) Photocontrollable DNA Origami Nanostructures Assembling into Predesigned Multiorientational Patterns. Journal of the American Chemical Society, 134, 20645-20653.
http://dx.doi.org/10.1021/ja307785r
[6] Yin, P., Hariadi, R., Sahu, S., Choi, H.M.T., Park, S.-H., La Bean, T.H. and Reif, J.H. (2008) Programming Molecular Tube Circumferences. Science, 321, 824-826.
http://dx.doi.org/10.1126/science.1157312
[7] Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Petersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V. and Kjems, J. (2009) Self-Assembly of a Nanoscale DNA Box with a Controllable Lid. Nature, 459, 73-76.
http://dx.doi.org/10.1038/nature07971
[8] Fujibayashi, K., Hariadi, R., Ha Park, S., Winfree, E. and Murata, S. (2008) Toward Reliable Algorithmic Self-Assem- bly of DNA Tiles: A Fixed Width Cellular Automaton Pattern. Nano Letters, 8, 1791-1797.
http://dx.doi.org/10.1021/nl0722830
[9] Zhang, D.Y. (2010) Dynamic DNA Strand Displacement Circuits. Thesis, California Institute of Technology Pasadena, California.
[10] Zhang, D.Y. and Winfree, E. (2009) Control of DNA Strand Displacement Kinetics Using Toehold Exchange. JACS, 131, 17303-17314.
http://dx.doi.org/10.1021/ja906987s
[11] Zhang, D.Y. and Seelig, G. (2011) Dynamic DNA Nanotechnology Using Strand-Displacement Reactions. Nature Chemistry, 3, 103-113.
http://dx.doi.org/10.1038/nchem.957
[12] Seeman, N.C. (2010) Nanomaterials Based on DNA. Annual Review of Biochemistry, 79, 65-87.
http://dx.doi.org/10.1146/annurev-biochem-060308-102244
[13] Simmel, F.C. (2009) Processive Motion of Bipedal DNA Walkers. ChemPhysChem, 10, 2593-2597.
http://dx.doi.org/10.1002/cphc.200900493
[14] Qian, L. and Winfree, E. (2011) A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. Journal of the Royal Society Interface, 8, 1281-1297.
http://dx.doi.org/10.1098/rsif.2010.0729
[15] Li, B.L., Ellington, A.D. and Chen, X. (2011) Rational, Modular Adaptation of Enzyme-Free DNA Circuits to Multiple Detection Methods. Nucleic Acids Research, 39, e110.
http://dx.doi.org/10.1093/nar/gkr504
[16] Chen, X., Briggs, N., McLain, J. and Ellington, A.D. (2013) Stacking Nonenzymatic Circuits for High Signal Gain. Proceedings of the National Academy of Sciences of the United States of America, 110, 5386-5391.
http://dx.doi.org/10.1073/pnas.1222807110
[17] Montagne, K., Plasson, R., Sakai, Y., Fujii, T. and Rondelez, Y. (2011) Programming an in Vitro DNA Oscillator Using a Molecular Networking Strategy. Molecular Systems Biology, 7, 466.
[18] Qian, L. and Winfree, E. (2011) Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades. Science, 332, 1196-1201.
[19] Qian, L., Winfree, E. and Bruck, J. (2011) Neural Network Computation with DNA Strand Displacement Cascades. Nature, 475, 368-372.
http://dx.doi.org/10.1038/nature10262
[20] Bialek, W. (2012) Biophysics: Searching for Principles. Princeton University Press, Princeton.
[21] Alon, U. (2007) An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton.
[22] Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C. and Neumann, J.L. (2000) A DNA-Fuelled Molecular Machine Made of DNA. Nature, 406, 605-608.
http://dx.doi.org/10.1038/35020524
[23] Bishop, J.D. and Klavins, E. (2007) An Improved Autonomous DNA Nanomotor. Nanolet, 7, 2574-2577.
[24] Tian, Y., He, Y., Chen, Y., Yin, P. and Mao, C.D. (2005) A DNAzyme That Walks Processively and Autonomously along a One-Dimensional Track. Angewandte Chemie International Edition, 44, 4355-4358.
http://dx.doi.org/10.1002/anie.200500703
[25] Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Buck, A.J., Nangreave, J., Taylor, S., Pei, R.J., Stojanovic, M.N., Walter, N.G., Winfree, E. and Yan, H. (2010) Molecular Robots Guided by Prescriptive Landscapes. Nature, 465, 206- 210.
http://dx.doi.org/10.1038/nature09012
[26] Bath, J., Green, S.J. and Turberfield, A.J. (2005) A Free-Running DNA Motor Powered by a Nicking Enzyme. Angewandte Chemie International Edition, 44, 4358-4361.
[27] Wickham, S.F.J., Bath, J., Katsuda, Y., Hidaka, M.E.K., Sugiyama, H. and Turberfield, A.J. (2012) A DNA-Based Molecular Motor That Can Navigate a Network of Tracks. Nature Nanotechnology, 7, 169-173.
http://dx.doi.org/10.1038/nnano.2011.253
[28] Wickham, S.F.J., Endo, M., Katsuda, Y., Hidaka, K., Bath, J., Sugiyama, H. and Turberfield, A.J. (2011) Direct Observation of Stepwise Movement of a Synthetic Molecular Transporter. Nature Nanotechnology, 6, 166-169.
http://dx.doi.org/10.1038/nnano.2010.284
[29] Genot, A.J., Zhang, D.Y., Bath, J. and Turberfield, A.J. (2011) Remote Toehold: A Mechanism for Flexible Control of DNA Hybridization Kinetics. Journal of the American Chemical Society, 133, 2177-2182.
http://dx.doi.org/10.1021/ja1073239
[30] Tuberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I. and Simmel, F.C. (2003) DNA Fuel for Free- Running Nanomachines. Physical Review Journals, 90, Article ID: 118102.
http://dx.doi.org/10.1103/PhysRevLett.90.118102
[31] Gu, H.Z., Chao, J., Xiao, S.-J. and Seeman, N.C. (2009) Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate. Nature Nanotechnology, 4, 245-249.
http://dx.doi.org/10.1038/nnano.2009.5
[32] Alberti, P. and Mergny, J.L. (2003) DNA Duplex-Quadruplex Exchange as the Basis for a Nanomolecular Machine. Proceedings of the National Academy of Sciences, 100, 1569-1573.
http://dx.doi.org/10.1073/pnas.0335459100
[33] Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z. and Komiyama, M. (2007) Synthesis of Azoben- zene-Tethered DNA for Reversible Photo-Regulation of DNA Functions: Hybridization and Transcription. Nature Protocols, 2, 203-212.
http://dx.doi.org/10.1038/nprot.2006.465
[34] Durand, G., Lisi, S., Ravelet, C., Dausse, E., Peyrin, E. and Toulmé, J.J. (2014) Kissing Complex-Based Riboswitches for the Detection of Small Ligands. Angewandte Chemie International Edition, 53, 6942-6945.
[35] Srinivas, N., Ouldridge, T.E., Sulc, P., Schaeffer, J.M., Yurke, B., Louis, A.A., Doye, J.P.K. and Winfree, E. (2013) On the Biophysics and Kinetics of Toehold-Mediated DNA Strand Displacement. Nucleic Acids Research, 41, 10641- 10658.
http://dx.doi.org/10.1093/nar/gkt801
[36] Astumian, R.D. and Bier, M. (1996) Mechanochemical Coupling of the Motion of Molecular Motors to ATP Hydrolysis. Biophysical Journal, 70, 637-653.
[37] Prost, J., Chauwin, J.F., Peliti, L. and Ajdari, A. (1994) Asymmetric Pumping of Particles. Physical Review Letters, 72, 2652-2655.
http://dx.doi.org/10.1103/PhysRevLett.72.2652
[38] SantaLucia Jr., J. (1998) A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 95, 1460-1465.
http://dx.doi.org/10.1073/pnas.95.4.1460
[39] Hanggi, P., Talkner, P. and Borkovec, M. (1990) Reaction-Rate Theory: Fifty Years after Kramers. Reviews of Modern Physics, 62, 251-341.
http://dx.doi.org/10.1103/RevModPhys.62.251
[40] Cunha, S., Woldringh, C.L. and Odijk, T. (2005) Restricted Diffusion of DNA Segments within the Isolated Esche- richia coli Nucleoid. Journal of Structural Biology, 150, 226-232.
http://dx.doi.org/10.1016/j.jsb.2005.02.004
[41] Robertson, R.M. and Smith, D.E. (2007) Self Diffusion of Entangled Circular and Linear DNA: Dependence on Length and Concentration. Macromolecules, 40, 3373-3377.
http://dx.doi.org/10.1021/ma070051h
[42] Lifson, S. and Jackson, J.L. (1962) On the Self Diffusion of Ions in Polyelectrolyte Solutions. Journal of Chemical Physics, 36, 2410-2414.
http://dx.doi.org/10.1063/1.1732899
[43] Hunt, A.J., Gittes, F. and Hoard, J. (1994) The Force Exerted by a Single Kinesin Molecule against a Viscous Load. Biophysical Journal, 67, 766-781.
http://dx.doi.org/10.1016/S0006-3495(94)80537-5
[44] Panyutin, I.G. and Hsieh, P. (1994) The Kinetics of Spontaneous DNA Branch Migration. Proceedings of the National Academy of Sciences of the United States of America, 91, 2021-2025.
http://dx.doi.org/10.1073/pnas.91.6.2021
[45] Dennis, C., Fedorov, A., Ks, E., Salomé, L. and Grigoriev, M. (2004) RuvAB-Directed Branch Migration of Indivi- dual Holliday Junctions Is Impeded by Sequence Heterology. The EMBO Journal, 23, 2413-2422.
http://dx.doi.org/10.1038/sj.emboj.7600249
[46] Parmeggiani, A., Jülicher, F., Adjari, A. and Prost, J. (1999) Energy Transduction of Isothermal Ratchets: Generic Aspects and Specific Examples Close to and Far from Equilibrium. Physical Review E, 60, 2127-2140.
http://dx.doi.org/10.1103/PhysRevE.60.2127
[47] Magnasco, M. (1993) Forced Thermal Ratchets. Physical Review Letters, 71, 1477-1481.
http://dx.doi.org/10.1103/PhysRevLett.71.1477
[48] Doering, C.R. and Gadoua, J.C. (1992) Resonant Activation over a Fluctuating Barrier. Physical Review Letters, 69, 2318-2321.
http://dx.doi.org/10.1103/PhysRevLett.69.2318
[49] Hopfield, J.J. (1974) Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity. Proceedings of the National Academy of Sciences of the United States of America, 71, 4135-4139.
http://dx.doi.org/10.1073/pnas.71.10.4135
[50] Privman, Y. and Frisch, H.L. (1991) Exact Solution of the Diffusion Problem for a Piecewise Linear Barrier. Journal of Chemical Physics, 94, 8216-8219.
http://dx.doi.org/10.1063/1.460105
[51] Samanta, A. and Ghosh, S.K. (1992) Exact Results on Diffusion from a Piecewise Linear Potential Well. Journal of Chemical Physics, 97, 9321-9323.
http://dx.doi.org/10.1063/1.463308
[52] Adjari, A.J. and Prost, J. (1992) Mouvement induit par un potentiel periodique de basse symetrie: Dielectrophorese pulsee. J. Comptes Rendus de l’Académie des Sciences, Paris, 315, 1635-1639.
[53] Chandran, H., Gopalkrishnan, N., Phillips, A. and Reif, J. (2011) Localized Hybridization Circuits. In: Cardelli, L. and Shih, W., Eds., Proceedings of the 17th International Conference on DNA Computing and Molecular Programming, Pasadena, 19-23 September 2011, 64-83.
[54] Ruiz, I.M., Arbona, J.M., Lad, A., Aime, J.P. and Elezgaray. J. (Submitted) Localized Seesaw Gates.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.