Share This Article:

Present Tectonic Setting and Spatio-Temporal Distribution of Seismicity in the Apennine Belt

Full-Text HTML XML Download Download as PDF (Size:9980KB) PP. 429-454
DOI: 10.4236/ijg.2015.64034    3,263 Downloads   3,703 Views   Citations

ABSTRACT

In previous papers, we have argued that a close connection may exist between the discontinuous northward displacement of the Adria plate and the spatio-temporal distribution of major earthquakes in the periAdriatic regions [1]-[3]. In particular, five seismic sequences are tentatively recognized in the post 1400 A.D. seismic history, each characterized by a progressive migration of major shocks along the eastern (Hellenides, Dinarides), western (Apennines) and northern (Eastern Southern Alps) boundaries of Adria. In this work, we describe an attempt at gaining insights into the short-term evolution of the strain field that underlies the migration of seismicity in the Apennine belt. The results of this study suggest that seismicity in the study area is mainly conditioned by the fact that the outer (Adriatic) sector of the Apennine belt, driven by the Adria plate, is moving faster than the inner (Tyrrhenian) belt. This kinematics is consistent with the observed Pleistocene deformation pattern and the velocity field inferred by GPS data. The spatio-temporal distribution of major shocks during the last still ongoing seismic sequence (post 1930) suggests that at present the probability of next major shocks is highest in the Northern Apennines. Within this area, we suggest that seismic hazard is higher in the zones located around the outer sector of the Romagna-Marche-Umbria units (RMU), since that wedge is undergoing an accelerated relative motion with respect to the inner Apennine belt. This hypothesis may also account for the pattern of background seismicity in the Northern Apennines. This last activity might indicate that the Upper Tiber Valley fault system is the most resisted boundary sector of the RMU mobile wedge, implying an higher probability of major earthquakes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mantovani, E. , Viti, M. , Babbucci, D. , Tamburelli, C. , Cenni, N. , Baglione, M. and D’Intinosante, V. (2015) Present Tectonic Setting and Spatio-Temporal Distribution of Seismicity in the Apennine Belt. International Journal of Geosciences, 6, 429-454. doi: 10.4236/ijg.2015.64034.

References

[1] Mantovani, E., Viti, M., Babbucci, D., Cenni, N., Tamburelli, C. and Vannucchi, A. (2012) Middle Term Prediction of Earthquakes in Italy: Some Remarks on Empirical and Deterministic Approaches. Bollettino di Geofisica Teorica ed Applicata, 53, 89-111.
[2] Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C., Cenni, N., Baglione, M. and D’Intinosante, V. (2015) Recognition of Periadriatic Seismic Zones Most Prone to Next Major Earthquakes: Insights from a Deterministic Approach. In: D’Amico, S., Ed., Earthquakes and Their Impact on Society, Springer Natural Hazard Series, Springer, Berlin, in Press.
[3] Viti, M., Mantovani, E., Babbucci, D., Cenni, N. and Tamburelli, C. (2015) Where the Next Strong Earthquake in the Italian Peninsula? Insights by a Deterministic Approach. Bollettino di Geofisica Teorica ed Applicata, 56, in Press.
[4] Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C. and Albarello, D. (2006) Geodynamic Connection between the Indentation of Arabia and the Neogene Tectonics of the Central-Eastern Mediterranean Region. In: Dilek, Y. and Pavlides, S., Eds., Post-Collisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, Boulder, 15-49.
[5] Mantovani, E., Viti, M., Babbucci, D. and Tamburelli, C. (2007) Major Evidence on the Driving Mechanism of the Tyrrhenian-Apennines Trench-Arc-Back Arc System from Crop Seismic Data. Bollettino Della Società Geologica Italiana, 126, 459-471.
[6] Mantovani, E., Viti, M., Babbucci, D. and Albarello, D. (2007) Nubia-Eurasia Kinematics: An Alternative Interpre- tation from Mediterranean and North Atlantic Evidence. Annals of Geophysics, 50, 311-336.
[7] Mantovani, E., Babbucci, D., Tamburelli, C. and Viti, M. (2009) A Review on the Driving Mechanism of the Tyrrhenian-Apennines System: Implications for the Present Seismotectonic Setting in the Central-Northern Apennines. Tectonophysics, 476, 22-40. http://dx.doi.org/10.1016/j.tecto.2008.10.032
[8] Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C., Cenni, N., Baglione, M. and D’Intinosante, V. (2014) Generation of Back-Arc Basins as Side Effect of Shortening Processes: Examples from the Central Mediterranean. International Journal of Geosciences, 5, 1062-1079.
http://dx.doi.org/10.4236/ijg.2014.510091
[9] Viti, M., Mantovani, E., Babbucci, D. and Tamburelli, C. (2006) Quaternary Geodynamics and Deformation Pattern in the Southern Apennines: Implications for Seismic Activity. Bollettino della Società Geologica Italiana, 125, 273-291.
[10] Viti, M., Mantovani, E., Babbucci, D. and Tamburelli, C. (2009) Generation of Trench Arc-Back Arc Systems in the Western Mediterranean Region Driven by Plate Convergence. Bollettino della Società Geologica Italiana, 128, 89- 106.
[11] Viti, M., Mantovani, E., Babbucci, D. and Tamburelli, C. (2011) Plate Kinematics and Geodynamics in the Central Mediterranean. Journal of Geodynamics, 51, 190-204.
http://dx.doi.org/10.1016/j.jog.2010.02.006
[12] Bott, M.H.P. and Dean, D.S. (1973) Stress Diffusion from Plate Boundaries. Nature, 243, 339-341. http://dx.doi.org/10.1038/243339a0
[13] Anderson, D.L. (1975) Accelerated Plate Tectonics. Science, 167, 1077-1079.
http://dx.doi.org/10.1126/science.187.4181.1077
[14] Pollitz, F.F. (2003) The Relationship between the Instantaneous Velocity Field and the Rate of Moment Release in the Lithosphere. Geophysical Journal International, 153, 595-608. http://dx.doi.org/10.1046/j.1365-246X.2003.01924.x
[15] Heki, K. and Mitsui, Y. (2013) Accelerated Pacific Plate Subduction Following Interplate Thrust Earthquakes at the Japan Trench. Earth and Planetary Science Letters, 363, 44-49.
http://dx.doi.org/10.1016/j.epsl.2012.12.031
[16] Freed, A.M. (2005) Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer. Annual Review of Earth and Planetary Sciences, 33, 335-367.
http://dx.doi.org/10.1146/annurev.earth.33.092203.122505
[17] Pollitz, F.F., Burgmann, R. and Banerjee, P. (2006) Postseismic Relaxation Following the Great 2004 Sumatra-Anda- man Earthquake on a Compressible Self-Gravitating Earth. Geophysical Journal International, 167, 397-420. http://dx.doi.org/10.1111/j.1365-246X.2006.03018.x
[18] Freed, A.M., Ali, S.T. and Burgmann, R. (2007) Evolution of Stress in Southern California for the Past 200 Years from Coseismic, Postseismic and Interseismic Stress Changes. Geophysical Journal International, 169, 1164-1179. http://dx.doi.org/10.1111/j.1365-246X.2007.03391.x
[19] Ryder, I., Parsons, B.E., Wright, T.J. and Funning G.J. (2007) Post-Seismic Motion Following the 1997 Manyi (Tibet) Earthquake: InSAR Observations and Modelling. Geophysical Journal International, 169, 1009-1027. http://dx.doi.org/10.1111/j.1365-246X.2006.03312.x
[20] Ergintav, S., McClusky, S., Hearn, E., Reilinger, R., Cakmak, R., Herring, T., Ozener, H., Lenk, O. and Tari, E. (2009) Seven Years of Postseismic Deformation Following the 1999, M = 7.4 and M = 7.2, Izmit-Duzce, Turkey Earthquake Sequence. Journal of Geophysical Research, 114, Article ID: B07403. http://dx.doi.org/10.1029/2008JB006021
[21] Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M. and Imakiire, T. (2011) Coseismic and Post-Seismic Slip of the 2011 Magnitude-9 Tohoku-Oki Earthquake. Nature, 475, 373-376. http://dx.doi.org/10.1038/nature10227
[22] Mantovani, E., Viti, M., Babbucci, D. and Vannucchi, A. (2008) Long-Term Prediction of Major Earthquakes in the Calabrian Arc. Environmental Semeiotics, 1, 190-207.
http://dx.doi.org/10.3383/es.1.2.3
[23] Louvari, E., Kiratzi, A.A., Papazachos, B.C. and Katzidimitriou, P. (2001) Fault-Plane Solutions Determined by Waveform Modelling Confirm Tectonic Collision in the Eastern Adriatic. Pure and Applied Geophysics, 158, 1613- 1637. http://dx.doi.org/10.1007/PL00001236
[24] Benetatos, C. and Kiratzi, A. (2006) Finite-Fault Slip Models for the 15 April 1979 (Mw 7.1) Montenegro Earthquake and Its Strongest Aftershock of 24 May 1979 (Mw 6.2). Tectonophysics, 421, 129-143. http://dx.doi.org/10.1016/j.tecto.2006.04.009
[25] Aliaj, S. (2006) The Albanian Orogen: Convergence Zone between Eurasia and the Adria Microplate. In: Pinter, N., Grenerczy, G., Weber, J., Stein, S. and Medak, D., Eds., The Adria Microplate: GPS Geodesy, Tectonics and Hazard. Springer, Dordrecht, 133-149. http://dx.doi.org/10.1007/1-4020-4235-3_09
[26] Kokkalas, S., Xypolias, P., Koukouvelas, I. and Doutsos, T. (2006) Postcollisional Contractional and Extensional Deformation in the Aegean Region. In: Dilek, Y. and Pavlides, S., Eds., Post Collisional Tectonics and Magmatism in the Mediterranean Region and Asia, Special Paper 409, Geological Society of America, Boulder, 97-123.
[27] Louvari, E., Kiratzi, A.A. and Papazachos, B.C. (1999) The Cephalonia Transform Fault and Its Extension to Western Lefkada Island (Greece). Tectonophysics, 308, 223-236.
http://dx.doi.org/10.1016/S0040-1951(99)00078-5
[28] Markusic, S. and Herak, M. (1999) Seismic Zoning of Croatia. Natural Hazards, 18, 269-285. http://dx.doi.org/10.1023/A:1026484815539
[29] Kuk, V., Prelogovic, E. and Dragicevic, I. (2000) Seismotectonically Active Zones in the Dinarides. Geologia Croatica, 53, 295-303.
[30] Poljak, M., Zivcic, M. and Zupancic, P. (2000) The Seismotectonic Characteristics of Slovenia. Pure and Applied Geophysics, 157, 37-55. http://dx.doi.org/10.1007/PL00001099
[31] Burrato, P., Poli, M.E., Vannoli, P., Zanferrari, A., Basili, R. and Galadini, F. (2008) Sources of Mw5+ Earthquakes in Northeastern Italy and Western Slovenia: An Updated View Based on Geological and Seismological Evidence. Tectonophysics, 453, 157-176.
http://dx.doi.org/10.1016/j.tecto.2007.07.009
[32] Bressan, G., Bragato, P. and Venturini, C. (2003) Stress and Strain Tensors Based on Focal Mechanisms in the Seismotectonic Framework of the Eastern Southern Alps. Bulletin of the Seismological Society of America, 93, 1280-1297. http://dx.doi.org/10.1785/0120020058
[33] Galadini, F., Poli, M.E. and Zanferrari, A. (2005) Seismogenic Sources Potentially Responsible for Earthquakes with M ≥ 6 in the Eastern Southern Alps (Thiene-Udine Sector, NE Italy). Geophysical Journal International, 161, 739-762. http://dx.doi.org/10.1111/j.1365-246X.2005.02571.x
[34] Cenni, N., Mantovani, E., Baldi, P. and Viti, M. (2012) Present Kinematics of Central and Northern Italy from Continuous GPS Measurements. Journal of Geodynamics, 58, 62-72.
http://dx.doi.org/10.1016/j.jog.2012.02.004
[35] Cenni, N., Viti, M., Baldi, P., Mantovani, E., Bacchetti, M. and Vannucchi, A. (2013) Present Vertical Movements in Central and Northern Italy from GPS Data: Possible Role of Natural and Anthropogenic Causes. Journal of Geodynamics, 71, 74-85. http://dx.doi.org/10.1016/j.jog.2013.07.004
[36] Cenni, N., Viti, M. and Mantovani, E. (2015) Space Geodetic Data (GPS) and Earthquake Forecasting: Examples from the Italian Geodetic Network. Bollettino di Geofisica Teorica ed Applicata, 56, in Press.
[37] Altamimi, Z., Métivier, L. and Collilieux, X. (2012) ITRF2008 Plate Motion Model. Journal of Geophysical Research, 117, Article ID: B07402. http://dx.doi.org/10.1029/2011JB008930
[38] Piccardi, L., Tondi, G. and Cello, G. (2006) Geo-Structural Evidence for Active Oblique Extension in South-Central Italy. In: Pinter, N., et al., Eds., The Adria Microplate: GPS Geodesy, Tectonics and Hazard, Springer Verlag, Berlin, 95-108. http://dx.doi.org/10.1007/1-4020-4235-3_07
[39] Scisciani, V. and Calamita, F. (2009) Active Intraplate Deformation within Adria: Examples from the Adriatic Region. Tectonophysics, 476, 57-72. http://dx.doi.org/10.1016/j.tecto.2008.10.030
[40] Finetti, I.R., Boccaletti, M., Bonini, M., Del Ben, A., Pipan, M., Prizzon, A. and Sani, F. (2005) Lithospheric Tectono-Stratigraphic Setting of the Ligurian Sea-Northern Apennines-Adriatic Foreland from Integrated CROP Seismic Data. In: Finetti, I.R., Ed., CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy, Elsevier, Amsterdam, 119-158.
[41] Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E. and Ciaccio, M.G. (2008) Insights on the Seismogenic Layer Thickness from the Upper Crust Structure of the Umbria-Marche Apennines (Central Italy). Tectonics, 27, Article ID: TC1010. http://dx.doi.org/10.1029/2007TC002134
[42] Ascione, A., Cinque, A., Improta, L. and Villani, F. (2003) Late Quaternary Faulting within the Southern Apennines Seismic Belt: New Data from Mt. Marzano Area (Southern Italy). Quaternary International, 101-102, 27-41. http://dx.doi.org/10.1016/S1040-6182(02)00127-1
[43] Ascione, A., Caiazzo, C. and Cinque, A. (2007) Recent Faulting in Southern Apennines (Italy): Geomorphic Evidence, Spatial Distribution and Implications for Rates of Activity. The Italian Journal of Geosciences, 126, 293-305.
[44] Cello, G., Mazzoli, S., Tondi, E. and Turco, E. (1997) Active Tectonics in the Central Apennines and Possible Implications for Seismic Hazard Analysis in Peninsular Italy. Tectonophysics, 272, 43-68. http://dx.doi.org/10.1016/S0040-1951(96)00275-2
[45] Cello, G., Mazzoli, S. and Tondi, E. (1998) The Crustal Fault Structure Responsible for the 1703 Earthquake Sequence of Central Italy. Journal of Geodynamics, 26, 443-460.
http://dx.doi.org/10.1016/S0264-3707(97)00051-3
[46] Amoruso, A., Crescentini, L. and Scarpa, R. (1998) Inversion of Source Parameters from Near- and Far Field Observations: An Application to the 1915 Fucino Earthquake, Central Apennines, Italy. Journal of Geophysical Research, 103, 29989-29999. http://dx.doi.org/10.1029/98JB02849
[47] Piccardi, L., Gaudemer, Y., Tapponnier, P. and Boccaletti, M. (1999) Active Oblique Extension in the Central Apennines (Italy): Evidence from the Fucino Region. Geophysical Journal International, 139, 499-530. http://dx.doi.org/10.1046/j.1365-246x.1999.00955.x
[48] Boncio, P. and Lavecchia, G. (2000) A Structural Model for Active Extension in Central Italy. Journal of Geodynamics, 29, 233-244. http://dx.doi.org/10.1016/S0264-3707(99)00050-2
[49] Brozzetti, F., Boncio, P., Lavecchia, G. and Pace, B. (2009) Present Activity and Seismogenetic Potential of a Low-Angle Normal Fault System (Città Di Castello, Italy): Constraints from Surface Geology, Seismic Reflection Data and Seismicity. Tectonophysics, 463, 31-46.
http://dx.doi.org/10.1016/j.tecto.2008.09.023
[50] Catalano, S., Monaco, C. and Tortorici, L. (2004) Neogene-Quaternary Tectonic Evolution of the Southern Apennines. Tectonics, 23, Article ID: TC2003. http://dx.doi.org/10.1029/2003TC001512
[51] Ferranti, L., Santoro, E., Gazzella, M.E., Monaco, C. and Morelli, D. (2009) Active Transpression in the Northern Calabria Apennines, Southern Italy. Tectonophysics, 476, 226-251.
http://dx.doi.org/10.1016/j.tecto.2008.11.010
[52] Caputo, R., Salviulo, L. and Bianca, M. (2008) Late Quaternary Activity of the Scorciabuoi Fault (Southern Italy) as Inferred from Morphotectonic Investigations and Numerical Modeling. Tectonics, 27, Article ID: TC3004. http://dx.doi.org/10.1029/2007TC002203
[53] Finetti, I. and Del Ben, A. (1986) Geophysical Study of the Tyrrhenian Opening. Bollettino di Geofisica Teorica ed Applicata, 110, 75-156.
[54] Finetti, I.R. and Del Ben, A. (2005) Ionian Tethys Lithosphere Roll-Back Sinking and Back-Arc Tyrrhenian Opening From New CROP Seismic Data. In: Finetti, I.R., Ed., CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy, Elsevier, Amsterdam, 483-504.
[55] Del Ben, A., Barnaba, C. and Taboga, A. (2008) Strike-Slip Systems as the Main Tectonic Features in the Plio-Quar- ternary Kinematics of the Calabrian Arc. Marine Geophysical Researches, 29, 1-12. http://dx.doi.org/10.1007/s11001-007-9041-6
[56] Viti, M., D’Onza, F., Mantovani, E., Albarello, D. and Cenni, N. (2003) Post-Seismic Relaxation and Earthquake Triggering in the Southern Adriatic Region. Geophysical Journal International, 153, 645-657. http://dx.doi.org/10.1046/j.1365-246X.2003.01939.x
[57] Viti, M., Mantovani, E., Cenni, N. and Vannucchi, A. (2012) Post-Seismic Relaxation: An Example of Earthquake Triggering in the Apennine Belt (1915-1920). Journal of Geodynamics, 61, 57-67. http://dx.doi.org/10.1016/j.jog.2012.07.002
[58] Viti, M., Mantovani, E., Cenni, N. and Vannucchi, A. (2013) Interaction of Seismic Sources in the Apennine Belt. Physics and Chemistry of the Earth, 63, 25-35.
http://dx.doi.org/10.1016/j.pce.2013.03.005
[59] Mantovani, E., Viti, M., Babbucci, D., Albarello, D., Cenni, N. and Vannucchi, A. (2010) Long-Term Earthquake Triggering in the Southern and Northern Apennines. Journal of Seismology, 14, 53-65. http://dx.doi.org/10.1007/s10950-008-9141-z
[60] Wells, D.L. and Coppersmith, K.J. (1994) New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement. The Bulletin of the Seismological Society of America, 84, 974-1002.
[61] Toda, S., Stein, R.S. and Sagiya, T. (2002) Evidence from the AD 2000 Izu Islands Earthquake Swarm that Stressing Rate Governs Seismicity. Nature, 419, 58-61. http://dx.doi.org/10.1038/nature00997
[62] Kato, A., Ohnaka, M., Yoshida, S. and Mochizuki, H. (2003) Effect of Strain Rate on Constitutive Properties for the Shear Failure of Intact Granite in Seismogenic Environments. Geophysical Research Letters, 30, 2108. http://dx.doi.org/10.1029/2003GL018372
[63] Niemeijer, A.R. and Spiers, C.J. (2007) A Microphysical Model for Strong Velocity Weakening in Phyllosilicate-Bearing Fault Gouges. Journal of Geophysical Research, 112, Article ID: B10405. http://dx.doi.org/10.1029/2007JB005008
[64] Savage, H.M. and Marone, C. (2007) Effects of Shear Velocity Oscillations on Stick-Slip Behavior in Laboratory Experiments. Journal of Geophysical Research, 112, Article ID: B02301.
http://dx.doi.org/10.1029/2005JB004238
[65] Rovida, A., Camassi, R., Gasperini, P. and Stucchi, M., Eds. (2011) CPTI11, the 2011 Version of the Parametric Catalogue of Italian Earthquakes. INGV, Bologna.
[66] Guidoboni, E. and Comastri, A. (2005) Catalogue of Earthquakes and Tsunamis in the Mediterranean Area from the 11th to the 15th Century. INGV-SGA, Roma-Bologna, 1037 p.
[67] Castello, B., Selvaggi, G., Chiarabba, C. and Amato, A. (2006) CSI Catalogo Della Sismicità Italiana 1981-2002. Versione 1.1, INGV-CNT, Roma. http://csi.rm.ingv.it/
[68] ISIDe Working Group (2010) Italian Seismological Instrumental and Parametric Database. http://iside.rm.ingv.it
[69] Ibs-von Seht, M., Plenefisch, T. and Klinge, K. (2008) Earthquake Swarms in Continental Rifts—A Comparison of Selected Cases in America, Africa and Europe. Tectonophysics, 452, 66-77. http://dx.doi.org/10.1016/j.tecto.2008.02.008
[70] Horálek, J. and Fischer, T. (2008) Role of Crustal Fluids in Triggering the West Bohemia/Vogtland Earthquake Swarms: Just What We Know (A Review). Studia Geophysica et Geodaetica, 52, 455-478. http://dx.doi.org/10.1007/s11200-008-0032-0
[71] Roland, E. and McGuire, J.J. (2009) Earthquake Swarms on Transform Faults. Geophysical Journal International, 178, 1677-1690. http://dx.doi.org/10.1111/j.1365-246X.2009.04214.x
[72] Thomas, A.M., Bürgmann, R. and Dreger, D.S. (2013) Incipient Faulting near Lake Pillsbury, California, and the Role of Accessory Faults in Plate Boundary Evolution. Geology, 41, 1119-1122.
[73] Fischer, T., Horálek, J., Hrubcová, P., Vavrycuk, V., Brauer, K. and Kampf, H. (2014) Intra-Continental Earthquake Swarms in West-Bohemia and Vogtland: A Review. Tectonophysics, 611, 1-27. http://dx.doi.org/10.1016/j.tecto.2013.11.001
[74] Kundu, B., Legrand, D., Gahalaut, K., Gahalaut, V.K., Mahesh, P., Kamesh Raju, K.A., Catherine, J.K., Ambikapthy, A. and Chadha, R.K. (2012) The 2005 Volcano-Tectonic Earthquake Swarm in the Andaman Sea: Triggered by the 2004 Great Sumatra-Andaman Earthquake. Tectonics, 31, Article ID: TC5009. http://dx.doi.org/10.1029/2012TC003138
[75] Lienkaemper, J.J., McFarland, F.S., Simpson, R.W., Bilham, R.G., Ponce, D.A., Boatwright, J.J. and Caskey, J.S. (2012) Long-Term Creep Rates on the Hayward Fault: Evidence for Controls on the Size and Frequency of Large Earthquakes. Bulletin of the Seismological Society of America, 102, 31-41. http://dx.doi.org/10.1785/0120110033
[76] Shapiro, S.A., Huenges, E. and Borm, G. (1997) Estimating the Crust Permeability from Fluid Injection-Induced Seismic Emission at the KTB Site. Geophysical Journal International, 131, F15-F18. http://dx.doi.org/10.1111/j.1365-246X.1997.tb01215.x
[77] Minissale, A. (2004) Origin, Transport and Discharge of CO2 in Central Italy. Earth-Science Reviews, 66, 89-141. http://dx.doi.org/10.1016/j.earscirev.2003.09.001
[78] Lombardi, A.M., Marzocchi, W. and Cocco, M. (2010) On the Increase of Background Seismicity Rate during the 1997-1998 Umbria-Marche, Central Italy, Sequence: Apparent Variation or Fluid-Driven Triggering? Bulletin of the Seismological Society of America, 100, 1138-1152.
http://dx.doi.org/10.1785/0120090077
[79] Chiarabba, C., De Gori, P. and Mele, F.M. (2015) Recent Seismicity of Italy: Active Tectonics of the Central Mediterranean Region and Seismicity Rate Changes after the Mw 6.3 L’Aquila Earthquake. Tectonophysics, 638, 82-93.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.