Share This Article:

The Functions of the Amyloid Precursor Protein Gene and Its Derivative Peptides: I Molecular Biology and Metabolic Processing

Abstract Full-Text HTML XML Download Download as PDF (Size:264KB) PP. 120-131
DOI: 10.4236/nm.2011.22018    4,573 Downloads   9,004 Views   Citations

ABSTRACT

The amyloid precursor protein gene (APP) and its derivative peptides have important functions in the central nervous system. APP and Aβ fulfil criteria as neuractive peptides: presence, release and identity of action. Aβ is a peptide of 1 - 43 amino acids in length, derived from APP and the major component of the core of neuritic plaques found in Alzheimer’s disease. Analysis of the cDNA of Aβ revealed its origins from the larger precursor protein. There are at least four types of mRNA generated by alternative splicing of exons 7 and 8. Exon 7 encodes a 57 amino acid sequence found in the extracellular domain with major homology to the Kunitz-type of serine protease inhibitors. APP is cleaved by three secretases known as α, β, and γ secretase which act on APP at different sites producing various fragments of differing amino acid length. The γ secretase is a macromolecular enzyme complex composed of presenilin 1, 2 and other molecular constitutents essential for its function.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Panegyres and E. Atkins, "The Functions of the Amyloid Precursor Protein Gene and Its Derivative Peptides: I Molecular Biology and Metabolic Processing," Neuroscience and Medicine, Vol. 2 No. 2, 2011, pp. 120-131. doi: 10.4236/nm.2011.22018.

References

[1] A. Alzheimer, “Uber Eine Eigenartige Erkrankung Der Hirnrinde. Allgemeine Zeitsch Psych Psychisch-Gerichtichliche Med LXIV,” 1907, Translated in: K. Bick, L. Armaducci, and G. Pepeu, Eds., The Early Story of Alzheimer's Disease, Livinia Press, Italy, 1987, pp 1-3.
[2] G. G. Glenner and C. W. Wong, “Alzheimer's Disease: Initial Report of the Purification and Characterization of a Novel Cerebro-Vascular Amyloid Peptide,” Biochemical and Biophysical Research Communications, Vol. 120, 1984, pp. 885-890.
[3] C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald and K. Beyreuther, “Amyloid Plaque Core Protein in Alzheimer disease and Down syndrome,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 82, 1985, No. 12, pp. 4245-4249.
[4] J. Kang, H. G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters, K. H. Grzeschik, G. Multhaup, K. Beyreuther and B. Muller-Hill, “The Precursor of Alzheimer's Disease Amyloid A4 Protein Resembles a Cell Surface Receptor,” Nature, Vol. 325, 1987, pp. 733-736.
[5] D. J. Selkoe, M. B. Podlisny, C. L. Joachim, E. A. Vickers, G. Lee, L. C. Fritz, T. Oltersdorf, “B-Amyloid Precursor Protein of Alzheimer Disease Occurs as 110-135 Kilo-Dalton Membrane-Associated Proteins in Neural and Nonneural Tissues,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 85, No. 19, 1988, pp. 7341-7345.
[6] R. L. Neve, E. A. Finch and L. R. Dawes, “Expression of the Alzheimer Amyloid Precursor Gene Transcripts in the Human Brain,” Neuron, Vol. 1, 1988, pp. 669-667.
[7] S. S. Sisodia, E. H. Koo, P. N. Hoffman, G. Perry and D. L. Price, “Identification and Transport of Full-Length Amyloid Precursor Proteins in Rat Peripheral Nervous System,” Journal of Neuroscience, Vol. 13, 1993, pp. 3136-3142.
[8] J. P. Anderson, L. M. Refoldo, W. Wallace, P. Mehta, M. Krishnamurthi, J. Gotlib, L. Bierer, V. Haroutunian, D. Perl and N. K. Robakis, “Differential Brain Expression of the Alzheimer's Amyloid Precursor Protein,” EMBO Journal, Vol. 12, 1989, pp. 3627-3632.
[9] R. W. Manning, C. M. Reid, R. A. Lampe and L. G. Davis, “Identification in Rodents and Other Species of an Mrna Homolgous to the Human ?-Amyloid Precursor,” FEBS Letters, Vol. 427, 1998, pp. 367-370.
[10] C. A. Sprecher, F. J. Grant, G. Grimm, P. J. O’Hara, F. Norris, K. Norris and D. C. Foster, “Molecular Cloning of the CDNA for a Human Amyloid Precursor Protein Homolog: Evidence for a Multigene Family,” Biochemistry, Vol. 32, 1993, pp. 4481-4486.
[11] J. Kang and B. Müller-Hill, “Differential Splicing of Alzheimer's Disease Amyloid A4 Precursor RNA in Rat Tissues,” Nature, Vol. 325, 1987, pp. 733-736.
[12] T. E. Golde, S. Estus, M. Usiak, L. H. Younkin and S. G. Younkin, “Expression of B Amyloid Protein Precursor mRNAs: Recognition of a Novel Alternatively Spliced Form and Quantitation in Alzheimer's Disease Using PCR,” Neuron, Vol. 4, 1990, pp. 253-267.
[13] N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri and H. Ito, “Novel Precursor of Alzheimer's Disease Amyloid Protein Shows Protease Inhibitor Activity,” Nature, Vol. 331, 1988, pp. 530-532.
[14] G. Konig, U. Monning, C. Czech, R. Prior, R. Banati, U. Schreiter-Gasser, J. Bauer, C. L. Masters and K. Beyreuther, “Identification and Differential Expression of a Novel Alternative Splice Isoform of the BA4 Amyloid Precursor Protein (APP) mRNA in Leukocytes and Brain Microglial Cells,” Journal of Biological Chemistry, Vol. 267, 1992, pp. 10804-10809.
[15] J. Kang and B. Muller-Hill, “Differential Splicing of Alzheimer’s Disease Amyloid A4 Precursor RNA in Rat Tissues – Pre A4695 is Predominantly Produced in Rat and Human Brain,” Biochemical and Biophysical Research Communications, Vol. 166, 1990, pp. 1192-1200.
[16] R. E. Tanzi, J. F. Gusella, P. C. Watkins, G. A. Bruns, P. St George-Hyslop, M. L. Van Keuren, D. Patterson, S. Pagan, D. M. Kurnit and R. L. Neve, “cDNA, mRNA Distribution, and Genetic Linkage Near the Alzheimer Locus,” Science, Vol. 235, 1988, pp. 880-884.
[17] R. Sandbrink, C. L. Masters and K. Beyreuther, “BA4-Amyloid Protein Precursor mRNA isoforms without Exon 15 are Ubiquitously Expressed in Rat Tissues Including Brain, But Not in Neurons,” Journal of Biological Chemistry, Vol. 269, 1994, pp. 1510-1517.
[18] R. Sandbrink, C. L. Masters and K. Beyreuther, “APP Gene Family Alternative Splicing Generates Functionally Related Isoforms,” Annals of the New York Academy of Sciences, Vol. 77, 1996, pp. 281-287.
[19] M. N. Pangalos, S. Efthimiopoulos, J. Shioi and N. K. Robakis, “The Chondroitin Sulfate Attachment Site of Appican is Formed by Splicing Out Exon 15 of the Amyloid Precursor Gene,” Journal of Biological Chemistry, Vol. 270, 1995, pp. 10388-10391.
[20] W. Araki and R. J. Wurtman, “Increased Expression of Amyloid Precursor Protein and Amyloid Precursor-Like Protein 2 During Trophic Factor Withdrawal-Induced Death of Neuronal PC12 Cells,” Molecular Brain Research, Vol. 56, 1998, pp. 169-177.
[21] L. M. Monteggia, S. P. Arneric and T. Giordana, “Nicotine Effects on the Regulation of Amyloid Precursor Protein Splicing, Neurotrophin and Glucose Transporter RNA Levels in Aged Rates,” International Journal of Developmental Neuroscience, Vol. 12, 1994, pp. 133-141.
[22] J. Apelt, R. Schliebs, M. Beck, S. Rossner and V. Bigl, “Expression of Amyloid Precursor Protein Mrna Isoforms in Rat Brain Is Differentially Regulated During Postnatal Maturation and By Cholinergic Activity,” International Journal of Developmental Neuroscience, Vol. 15, 1997, pp. 95-112.
[23] Y. Ohyagi, K. Takahashi, M. Kamegai and T. Tabira, “Developmental and Differential Expression of Beta Amyloid Protein Precursor mRNAs in Mouse Brain,” Biochemical and Biophysical Research Communications, Vol. 167, 1990, pp. 54-60.
[24] C. A. Sherman and G. A. Higgins, “Regulated Splicing of the Amyloid Precursor Protein During Postnatal Development of the Rat Basal Forebrain,” Developmental Brain Research. Vol. 66, 1992, pp. 63-69.
[25] N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri and H. Ito, “Novel Precursor of Alzheimer’s Disease Amyloid Protein Shows Protease Inhibitor Activity,” Nature, Vol. 331, 1988, pp. 530-532.
[26] T. Oltersdorf, L. C. Fritz, D. B. Schenk, I. Lieberburg, K. L. Johnson-Wood, E. C. Beattie, P. J. Ward, R. W. Blacher, H. F. Dovey and S. Sinha, “The Secreted Form of the Alzheimer's Precursor Protein with the Kunitz Domaini Protease Nexin II,” Nature, Vol. 341, pp. 144-147.
[27] P. Ponte, P. Gonzalez-Dewhitt, J. Schilling, J. Miller, D. Hsu, B. Greenberg, K. Davis, W. Wallace, I. Lieberburg and F. Fuller, “A New A4 Amyloid mRNA Contains a Domain Homologous to Serine Protease Inhibitors,” Nature, Vol. 331, 1988, pp. 525-527.
[28] R. E. Tanzi, A. I. McClatchey, E. D. Lamperti, L. Villa-Komaroff, J. F. Gusella and R. L. Neve, “Protease Inhibitor Domain Encoded by Amyloid Protein Precursor mRNA Associated With Alzheimer's Disease,” Nature, Vol. 331, 1987, pp. 528-530.
[29] W. E. Van Nostrand and D. D. Cunningham, “Purification of Protease Nexin II from Human Fibroblasts,” Journal of Biological Chemistry, Vol. 262, 1987, pp. 8508-8514.
[30] W. E. Van Nostrand, S. L. Wagner, M. Suzuki, B. H. Choi, J. S. Farrow and D. D. Cunningham, “Protease Nexin II, a Potent Antichymotrypsin, Shows Identity to Amyloid B-Protein Precursor,” Nature, Vol. 341, 1989, pp. 546-549.
[31] J. M. Chernak, “Structural Features of the 5’ Upstream Regulatory Region of the Gene Encoding Rat Amyloid Precursor Protein,” Gene, Vol. 133, 1993, pp. 255-260.
[32] W. J. Lukiw, E. I. Rogaev, L. Wong, G. Vaula, D. R. C. McLachlan and P. St George-Hyslop, “Protein-DNA Interactions in the Promoter Region of the Amyloid Precursor Protein (APP) Gene in Human Neocortex,” Molecular Brain Research, Vol. 22, 1994, pp. 121-131.
[33] B. D. Shivers, C. Hilbich, G. Multhaup, M. Salbaum, K. Beyreuther and P. H. Seeburg, “Alzheimer's Disease Amyloidogenic Glycoprotein: Expression in Rat Brain Suggests a Role in Cell Contact,” EMBO Journal, Vol. 7, 1988, pp. 1365-1370.
[34] W. Song and D. K. Lahiri, “Isolation of the Genomic Clone of the Rhesus Monkey Beta-Amyloid Precursor Protein,” Biochemistry and Molecular Biology International, Vol. 46, 1998, pp. 755-764.
[35] D. K. Lahiri and N. K. Robakis, “The Promotor Activity of the Gene Encoding Alzheimer B-Amyloid Precursor Protein (APP) is Regulated by Two Blocks of Upstream Sequences,” Molecular Brain Research, Vol. 9, 1991, pp. 253-257.
[36] P. Pollwein, C. L. Masters and K. Beyreuther, “TheExpression of the Amyloid Precursor Protein (APP) is Regulated by Two GC-Elements in the Promoter,” Nucleic Acids Research, Vol. 20, 1992, pp. 63-68.
[37] S. Ledoux, J. Nalbantoglu and N. R. Cashman, “Amyloid Precursor Protein Gene Expression in Neural Cell Lines: Influence of DNA Cytosine Methylation,” Molecular Brain Research, Vol. 24, 1994, pp. 140-144.
[38] N. N. Dewji, C. Do and R. M. Bayney, “Transcriptional Activation of Alzheimer’s Beta-Amyloid Precursor Protein Gene by Stress,” Molecular Brain Research, Vol. 33, 1995, pp. 245-253.
[39] R. Izumi, T. Yamada, S. Yoshikai, H. Sasaki, M. Hattori and Y. Sakaki, “Positive and Negative Regulatory Elements for the Expression of the Alzheimer’s Disease Amyloid Precursor-Encoding Gene in Mouse,” Gene, Vol. 112, 1992, pp. 189-195.
[40] M. Bourbonniere and J. Nalbantoglu, “Expression of Amyloid Precursor Protein in a Neuronal Cell Line: Functional Activity of Proximal Regulatory Elements,” Molecular Brain Research, Vol. 19, 1993, pp. 246-250.
[41] P. W. Hoffman and J. M. Chernak, “The Rat Amyloid Precursor Protein Promoter Contains Two DNA Regulatory Elements Which Influence High Level Gene Expression,” Biochemical and Biophysical Research Communications, Vol. 201, 1994, pp. 610-617.
[42] S. H. Zaidi, R. Denman and J. S. Malter, “Multiple Proteins Interact at a Unique Cis-Element in the 3’-Untranslated Region of Amyloid Precursor Protein mRNA,” Journal of Biological Chemistry, Vol. 269, 1994, pp. 24000-24006.
[43] S. H. Zaidi and J. S. Malter, “Amyloid precursor Protein mRNA Stability is Controlled by a 29-Base Element in the 3’-Untranslated Region,” Journal of Biological Chemistry, Vol. 269, 1994, pp. 24007-24013.
[44] P. W. Hoffman and J. M. Chernak, “DNA Binding and Regulatory Effects of Transcription Factors SP1 and USF at the Rat Amyloid Precursor Protein Gene Promoter,” Nucleic Acids Research, Vol. 25, 1995, pp. 2229-2235.
[45] M. Bourbonniere and J. Nalbantoglu, “The Helix-Loop-Helix Transcription Factor USF Interacts with the Basal Promoter of Human Amyloid Precursor Protein,” Molecular Brain Research, Vol. 35, 1996, pp. 304-308.
[46] M. Grilli, M. Ribola, A. Alberici, A. Valerio, M. Memo and P. Spano, “Identification and Characterization of a Kappa B/Rel Binding Site in the Regulatory Region of the Amyloid Precursor Protein Gene,” Journal of Biological Chemistry, Vol. 270, 1995, pp. 26774-26777.
[47] M. Grilli, F. Goffi, M. Memo and P. Spano, “Interleukin-1beta and Glutamate Activate the NF-kappaB/Rel Binding Site From the Regulatory Region of the Amyloid Precursor Protein i Primary Neuronal Cultures,” Journal of Biological Chemistry, Vol. 271, 1996, pp. 15002-15007.
[48] A. Odaka, T. Tsukahara, M. Momoi and T. Momoi, “c-jun Inhibited the Alternative Splicing of Neuron-Specific Amyloid Precursor Protein, but Stimulated the Non-Neuron Type One in P19 EC Cells,” Biochemical and Biophysical Research Communications, Vol. 206, 1995, pp. 831-828.
[49] N. Chow, J. R. Korenberg, X. N. Chen and R. L. Neve, “APP-BP1, a Novel Protein That Binds to the Carboxyl-Terminal Region of the Amyloid Precursor Protein,” Journal of Biological Chemistry, Vol. 271, 1996, pp. 11339-11346.
[50] N. Ramakrishna, M. Smedman and B. Gillam, “Suppression of Alzheimer Amyloid Precursor Protein (APP) Expression by Exogenous APP mRNA,” Archives of Biochemistry and Biophysics, Vol. 326, 1996, pp. 243-251.
[51] D. Neill, A. Leake, D. Hughes, A. B. Keith, G. A. Taylor, D. Allsop, B. K. Rima, C. Morris, J. M. Candy and J. A. Edwardson, “Effect of Aluminium on Expression and Processing of Amyloid Precursor Protein,” Journal of Neuroscience Research, Vol. 15, 1996, pp. 395-403.
[52] A. E. Aplin, J. S. Jacobsen, B. H. Anderton and J. M. Gallo, “Effect of Increased Glycogen Synthase Kinase-3 Activity Upon the Maturation of the Amyloid Precursor Protein in Transfected Cells,” Neuroreport, Vol. 8, 1997, pp. 639-643.
[53] M. Bourbonniere, M. Shekarabi and J. Nalbantoglu, “Enhanced Expression of Amyloid Precursor Protein in Response to Dibutyryl Cyclic AMP is Not Mediated By the Transcription Factor AP-2,” Journal of Neurochemistry, Vol. 68, 1997, pp. 909-916.
[54] G. Gegelashvili, E. Bock, A. Schousboe and D. Linnemann, “Two Types of Amyloid Precursor Protein (APP) mRNA in Rat Glioma Cell Lines: Upregulation Via a Cyclic AMP-Dependent Pathway,” Molecular Brain Research, Vol. 37, 1996, pp. 151-156.
[55] M. Shekarabi, M. Bourbonniere, A. Dagenais and J. Nalbantoglu, “Transcriptional Regulation of Amyloid Precursor Protein During Dibutyryl Cyclic AMP-Induced Differentiation of NG108-15 Cells,” Journal of Neurochemistry, Vol. 68, 1997, pp. 970-978.
[56] S. H. Zaidi and J. S. Malter, “Nucleolin and Heterogeneous Nuclear Ribonucleoprotein C Proteins Specifically Interact with the 3’-Untranslated Region of Amyloid Protein Precursor mRNA,” Journal of Biological Chemistry, Vol. 270, 1995, pp. 27292-27298.
[57] H. H. Slunt, G. Thinakaran, C. von Koch, A. L. Y. Lo, R. E. Tanzi and S. S. Sisodia, “Expression of a Ubiquitous Cross-Reactive Homologue of the Mouse ?-Amyloid Precursor Protein (APP),” Journal of Biological Chemistry, Vol. 269, 1994, pp. 2637-2644.
[58] W. Wasco, K. Bupp, M. Magendantz, J. F. Gusella, R. E. Tanzi and F. Solomon, “Identification of a Mouse Brain cDNA That Encodes a Protein Related to the Alzheimer Disease-Associated Amyloid Beta-Protein Precursor,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, 1992, pp. 10758-10762.
[59] W. Wasco, S. Gurubhagavatula, M. D. Paradis, D. M. Romano, S. S. Sisodia, B. T. Hyman, R. L. Neve and R. E. Tanzi, “Isolation and Characterization of APLP 2 Encoding a Homologue of the Alzheimer’s Associated Amyloid A? Protein Precursor,” Nature Genetics, Vol. 5, 1993, pp. 95-99.
[60] G. Thinakaran, C. A. Kitt, A. J. Roskams, H. H. Slunt, E. Masliah, C. von Koch, S. D. Ginsberg, G. V. Ronnett, R. R. Reed and D. L. Price, “Distribution of an APP Homolog, APLP 2, in the Mouse Olfactory System: A Potential Role for APLP in Axogenesis,” Journal of Neuroscience, Vol. 15, 1995, pp. 6314-6326.
[61] T. W. Kim, K. Wu, J. L. Xu, G. McAuliffe, R. E. Tanzi, W. Wasco and I. B. Black, “Selective Localization of Amyloid Precursor-Like Protein 1 in the Cerebral Cortex Postsynaptic Density,” Molecular Brain Research, Vol. 32, 1995, pp. 36-44.
[62] S. J. Harper, J. G. Bilsland, M. S. Shearman, H. Zheng, L. Van der Ploeg and D. J. Sirinathsinghji, “Mouse Cortical Neurones Lacking APP Show Normal Neurite Outgrowth and Survival Responses In Vitro,” NeuroReport, Vol. 9, 1998, pp. 3053-3058.
[63] M. J. McNamara, C. T. Ruff, W. Wasco, R. E. Tanzi, G. Thinakaran and B. T. Hyman, “Immunohistochemical and In Situ Analysis of Amyloid Precursor-Like Protein-1 and Amyloid Precursor-Like Protein-2 Expression in Alzheimer Disease and Aged Control Brains,” Brain Research, Vol. 804, 1998, pp. 45-51.
[64] K. Maruyama, F. Kametani, M. Usami, W. Yamao-Harigaya and K. Tanaka, “‘Secretase,’ Alzheimer Amyloid Protein Precursor Secreting Enzyme is Not Sequence-Specific,” Biochemical and Biophysical Research Communications, Vol. 179, 1991, pp. 1670-1679.
[65] R. Cappai, S. S. Mok, D. Galatis, D. F. Tucker, A. Henry, K. Beyreuther, D. H. Small and C. L. Masters, “Recombinant Human Amyloid Precursor-Like Protein 2 (APLP2) Expressed in the Yeast Pichia Pastoris Can Stimulate Neurite Outgrowth,” FEBS Letters, Vol. 442, 1999, pp. 95-98.
[66] R. Siman, S. Mistretta, J. T. Durkin, M. J. Savage, T. Loh, S. Trusko and R. W. Scott, “Processing of the Beta-Amyloid Precursor. Multiple Proteases Generate and Degrade Potentially Amyloidogenic Fragments,” Journal of Biological Chemistry, Vol. 268, 1993, pp. 16602-16609.
[67] S. S. Sisodia, “Beta-Amyloid Precursor Protein Cleavage by a Membrane-Bound Protease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, 1992, pp. 6075-6079.
[68] R. Wang, J. F. Meschia, R. J. Cotter and S. S. Sisodia, “Secretion of the Beta/A4 Amyloid Precursor Protein. Identification of a Cleavage Site in Cultured Mammalian Cells,” Journal of Biological Chemistry, Vol. 266, 1991, pp. 16960-16964.
[69] S. L. Gillespie, T. E. Golde and S. G. Younkin, “Secretory Processing of the Alzheimer Amyloid Beta/A4 Protein Precursor Is Increased By Protein Phosphorylation,” Biochemical and Biophysical Research Communications, Vol. 187, 1992, pp. 1385-1290.
[70] R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J. C. Louis, F. Collins, J. Treanor, G. Rogers and M. Citron, “Beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein By the Transmembrane Aspartic Protease BACE,” Science, Vol. 286, 1999, pp. 735-741.
[71] S. R. Sahasrabudhe, M. A. Spruyt, H. A. Muenkel, A. J. Blume, M. P. Vitek and J. S. Jacobsen, “Releases of Amino-Terminal FragmentsfFrom Amyloid Precursor Protein Reporter and Mutated Derivatives in Cultured Cells,” Journal of Biological Chemistry, Vol. 267, 1992, pp. 25602-25608.
[72] J. Mackic, M. Weiss, W. Mhao, E. Kirkman, J. Ghiso, M. Calero, J. Bading, B. Frangione and B. V. Zlokovic, “Cerebrovascular Accumulation and Increased Blood-Brain Barrier Permeability to Circulating Alzheimer’s Amyloid Beta Peptide in Aged Squirrel Monkey and Cerebral Amyloid Angiopathy,” Journal of Neurochemistry, Vol. 70, 1998, pp. 210-215.
[73] K. Maruyama, Y. Kawamura, H. Asada, S. Ishiura and K. Obata, “Cleavage at the N-Terminal Site of Alzheimer Amyloid Beta/A4 Protein Is Essential For Its Secretion,” Biochemical and Biophysical Research Communications, Vol. 202, 1994; pp. 1517-1523.
[74] L. I. Benowitz, W. Rodriguez, P. Paskevich, E. Mufson, D. Schenk and R. L. Neve, “The Amyloid Precursor Protein Is Concentrated in Neuronal Lysosomes in Normal and Alzheimer Disease Subjects,” Experimental Neurology, Vol. 106, 1989, pp. 106: 237-250.
[75] G. L. Caporaso, K. Takei, S. E. Gandy, M. Matteoli, O. Mundigl, P. Greengard and P. De Camilli, “Morphologic and Biochemical Analysis of the Intracellular Trafficking of the Alzheimer Beta/A4 Amyloid Precursor Protein,” Journal of Neuroscience, Vol. 14, 1994, pp. 3122-3138.
[76] T. Dyrks, E. Dyrks, U. Monning, B. Urmoneit, J. Turner and K. Beyreuther, “Generation of Beta A4 from the Amyloid Precursor and Fragments Thereof,” FEBS Letters, Vol. 335, 1993, pp. 89-93.
[77] C. Schonlein, A. Probst and G. Huber, “Characterization of Proteases with the Specificity to Cleave at the Secretase-Site of Beta-APP,” Neuroscience Letters, Vol. 161, 1993, pp. 33-36.
[78] H. Xu, P. Greengard and S. Gandy, “Regulation Formation of Golgi Secretory Vesicles Containing Alzheimer Beta-Amyloid Precursor Protein,” Journal of Biological Chemistry, Vol. 270, 1995, pp. 23243-23245.
[79] G. Thinakaran, D. B. Teplow, R. Siman, B. Greenberg and S. S. Sisodia, “Metabolism of the ‘Swedish’ Amyloid Precursor Protein Variant in Neuro2a (N2a) Cells. Evidence that Cleavage at the ‘Beta-Secretase’ Site Occurs in the Golgi Apparatus,” Journal of Biological Chemistry, Vol. 271, 1996, pp. 9390-9397.
[80] B. De Strooper, P. Saftig, K. Craessaerts, H. Vanderstichele, G. Guhde, W. Annaert, K. Von Figura and F. Van Leuven, “Deficiency of Presenilin-1 Inhibits the Normal Cleavage of Amyloid Precursor Protein,” Nature, Vol. 391, 1998, pp. 387-390.
[81] H. Xu, D. Sweeney, R. Wang, G. Thinakaran, A. C. Lo, S. S. Sisodia, P. Greengard and S. Gandy, “Generation of Alzheimer Beta-Amyloid Protein in the Trans-Golgi Network in the Apparent Absence of Vesicle Formation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, 1997, pp. 3748-3752.
[82] G. C. Peraus, C. L. Masters and K. Beyreuther, “Late Compartments of Amyloid Precursor Protein Transport in SY5Y Cells Are Involved in Beta-Amyloid Secretion,” Journal of Neuroscience, Vol. 17, 1997, pp. 7714-7724.
[83] J. P. Greenfield, J. Tsai, G. K. Gouras, B. Hai, G. Thinakaran, F. Checler, S. S. Sisodia, P. Greengard and H. Xu, “EndoplasmicReticulum and Trans-Golgi Network Generate Distinct Populations of Alzheimer Beta-Amyloid Peptides,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, 1999, pp. 742-747.
[84] Y. Li, H. Wang, S. Wang, D. Quon, Y. W. Liu and B. Cordell, “Positive and Negative Regulation of APP Amyloidogenesis by Sumoylation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, 2003, pp.259-264.
[85] W. Xia, J. Zhang, B. L. Ostaszewski, W. T. Kimberly, P. Seubert, E. H. Koo, J. Shen and D. J. Selkoe, “Presenilin 1 Regulates the Processing of Beta-Amyloid Precursor Protein C-Terminal Fragments and the Generation of Amyloid Beta-Protein in Endoplasmic Reticulum and Golgi,” Biochemistry, Vol. 37, 1998, pp. 16465-16471.
[86] G. E. Maestre, B. A. Tate, R. E. Majocha and C. A. Marotta, “Membrane Surface Ruffling in Cells that Over-Express Alzheimer Amyloid ?/A4 C-Terminal Peptide,” Brain Research, Vol. 62, 1993, pp. 145-149.
[87] R. Del Bo, N. Angeretti, E. Lucca, M. G. De Simoni and G. Forloni, “Reciprocal Control of Inflammatory Cytokines, IL-1 And IL-6, and B-Amyloid Production in Cultures,” Neuroscience Letters, Vol. 188, 1995, pp. 70-74.
[88] M. Citron, C. B. Eckman, T. S. Diehl, C. Corcoran, B. L. Ostaszewski, W. Xia, G. Levesque, P. St George-Hyslop, S. G. Younkin and D. J. Selkoe, “Additive Effects of PS1 and APP Mutations on Secretion of the 42-Residue Amyloid Beta-Protein,” Neurobiology of Disease, Vol. 5, 1998, pp.107-116.
[89] P. K. Panegyres and K. Toufexis, “Presenilin Immunoreactivity in Alzheimer’s Disease,” European Journal of Neurology, Vol. 12, 2004, pp. 700-706.
[90] Y. Tan, J. Hong, T. Doan, L. McConlogue and W. A. Maltese, “Presesnilin-1 Mutations Associated with Familial Alzheimer’s Disease Do Not Disrupt Protein Transport From the Endoplasmic Reticulum to the Golgi Apparatus,” Biochimica et Biophysica Acta, Vol. 1407, 1998, pp. 69-78.
[91] M. E. Manni, R. Cescato and P. A. Paganetti, “Lack of Beta-Amyloid Production in M19 Cells Deficient in Site 2 Processing of the Sterol Regulatory Element Binding Proteins,” FEBS Letters, Vol. 427, 1998, pp. 367-370.
[92] M. S. Wolfe, W. Xia, B. L. Ostaszewski, T. S. Diehl, W. T. Kimberly and D. J. Selkoe, “Two Transmembrane Aspartates in Presenilin-1 Required for Presenilin Endoproteolysis and Gamma-Secretase Activity,” Nature, Vol. 398, 1999, pp. 513-517.
[93] Y. Shen and R. Li, “Expressing mRNAs for Presenilin-1 and Amyloid Precursor Protein (APP-695) from Same Neuronal Populations in Rat Hippocampus,” Brain Research Bulletin, Vol. 46, 1998, pp. 233-236.
[94] D. Beher, C. Elle, J. Underwood, J. B. Davis, R. Ward, E. Karran, C. L. Masters, K. Beyreuther and G. Multhaup, “Proteolytic Fragments of Alzheimer’s Disease-Associated Presenilin 1 Are Present in Synaptic Organelles and Growth Cone Membranes of Rat Brain,” Journal of Neurochemistry, Vol. 72, 1999, pp. 1564-1573.
[95] R. Francis, G. McGrath, J. Zhang, D. A. Ruddy, M. Sym, J. Apfeld, M. Nicoll, M. Maxwell, B. Hai, M. C. Ellis, A. L. Parks, W. Xu, J. Li, M. Gurney, R. L. Myers, C. S. Himes, R. Hiebsch, C. Ruble, J. S. Nye and D. Curtis, “APH-1 and PEN-2 Are Required for Notch Pathway Signaling, Gamma-Secretase Cleavage of Betaapp, and Presenilin Protein Accumulation,” Developmental Cell, Vol. 3, 2002, pp. 85-97.
[96] A. Weidemann, K. Paliga, U. Kurrwang, C. Czech, G. Evin, C. L. Masters and K. Beyreuther, “Formation of Stable Complexes Between Two Alzheimer’s Disease Gene Products: Presenilin-2 and Beta-Amyloid Precursor Protein,” Nature Medicine, Vol. 3, 1997, pp. 328-332.
[97] W. Xia, J. Zhang, R. Perez, E. H. Koo and D. J. Selkoe, “Interaction Between Amyloid Precursor Protein and Presenilins in Mammalian Cells: Implications for the Pathogenesis of Alzheimer Disease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, 1997, pp. 8208-8213.
[98] N. N. Dewji and S. J. Singer, “Specific Intercellular Binding of the Beta-Amyloid Precursor Protein to the Presenilins Induces Intercellular Signaling: Its Significance for Alzheimer’s Disease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, 1998, pp. 15055-15060.
[99] W. L. Bunnell, H. V. Pham and C. G. Glabe, “Gamma-Secretase Cleavage Is Distinct from Endoplasmic Reticulum Degradation of the Transmembrane Domain of the Amyloid Precursor Protein,” Journal of Biological Chemistry, Vol. 273, 1998, pp. 31947-31955.
[100] Z. Kouchi, T. Kinouchi, H. Sorimachi, S. Ishiura and K. Suzuki, “The Deletion of the C-Terminal Tail and Addition of Any Endoplasmic Reticulum Targeting SignaltTo Alzheimer’s Amyloid Precursor Protein Change Its Localization, Secretion and Intracellular Proteolysis,” European Journal of Biochemistry, Vol. 258, 1998, pp. 291-300.
[101] P. W. Mantyh, J. R. Ghilardi, S. Rogers, E. DeMaster, C. J. Allen, E. R. Stimson and J. E. Maggio, “Aluminium, Iron and Zinc Ions Promote Aggregation of Physiological Concentrations of Beta-Amyloid Peptide,” Journal of Neurochemistry, Vol. 61, 1993, pp. 1171-1174.
[102] L. Buee, W. Ding, J. P. Anderson and S. Narindrasorasak, “Binding of Vascular Heparan Sulfate Proteoglycan to Alzheimer’s Amyloid Precursor Protein Is Mediated in Part By the N-Terminal Region of A4 Peptide,” Brain Research, Vol. 627, 1993, pp. 199-204.
[103] L. Buee, W. Ding, A. Delacourte and H. Fillit, “Binding of Secreted Human Neuroblastoma Proteoglycans to the Alzheimer’s Amyloid A4 Peptide,” Brain Research, Vol. 601, 1993, pp. 154-163.
[104] S. Bodovitz, M. T. Falduto, D. E. Frail and W. L. Klein, “Iron Levels Modulate Alpha-Secretase Cleavage of Amyloid Precursor Protein,” Journal of Neurochemistry, Vol. 64, 1995, pp. 307-315.
[105] D. H. Small, R. D. Moir, S. J. Fuller, S. Michaelson, A. I. Bush, Q. X. Li, E. Milward, C. Hilbich, A. Weidemann and K. Beyreuther, “A Protease Activity Associated with Acetylcholinesterase Releases the Membrane-Bound Form of the Amyloid Protein Precursor of Alzheimer’s Disease,” Biochemistry, Vol. 30, 1991, pp. 10795-10799.
[106] D. Gabuzda, J. Busciglio, L. B. Chen, P. Matsudaira and B. A. Yankner, “Inhibition of Energy Metabolism Alters the Processing of Amyloid Precursor Protein and Induces a Potentially Amyloidogenic Derivative,” Journal of Biological Chemistry, Vol. 269, 1994, pp. 13623-13628.
[107] S. J. Lee, U. Liyanage, P. E. Bickel, W. Xia, P. T. Lansbury Jr and K. S. Kosik, “A Detergent-Insoluble Membrane Compartment Contains A Beta In Vivo,” Nature Medicine, Vol. 4, 1998, pp. 730-734.
[108] L. Ho, K. Fukuchi and S. G. Younkin, “The Alternatively Spliced Kunitz Protease Inhibitor Domain Alters Amyloid ? Protein Precursor Processing and Amyloid ? Protein Production in Cultured Cells,” Journal of Biological Chemistry, Vol. 271, 1996, pp. 30929-30934.
[109] P. K. Panegyres, K. Zafiris-Toufexis and B. A. Kakulas, “Amyloid precursor Protein Gene Isoforms in Alzheimer’s Disease and Other Neurodegenerative Disorders,” Journal of Neurological Sciences, Vol. 173, 2000, pp. 81-92.
[110] Q. X. Li, M. C. Berndt, A. I. Bush, B. Rumble, I. Mackenzie, A. Friedhuber, K. Beyreuther and C. L. Masters, “Membrane-Associated Forms of the Beta A4 Amyloid Protein Precursor of Alzheimer’s Diseasei Human Platelet and Brain: Surface Expression on the Activated Human Platelet,” Blood, Vol. 84, 1994, pp. 133-142.
[111] Q. X. Li, G. Evin, D. H. Small, G. Multhaup, K. Beyreuther and C. L. Masters, “Proteolytic Processing of Alzheimer’s Disease Beta A4 Amyloid Precursor Protein in Human Platelets,” Journal of Biological Chemistry, Vol. 270, 1995, pp. 14140-14147.
[112] H. Komano, M. Seeger, S. Gandy, G. T. Wang, G. A. Krafft and R. S. Fuller, “Involvement of Cell Surface Glycosyl-Phosphatidylinositol-Linked Aspartyl Proteases in Alpha-Secretase-Type Cleavage and Ectodomain Solubilization of Human Alzheimer Beta-Amyloid Precursor Protein in Yeast,” Journal of Biological Chemistry, Vol. 273, 1998, pp. 31648-31651.
[113] D. Le Brocque, A. Henry, R. Cappai, Q. X. Li, J. E. Tanner, D. Glaatis, C. Gray, S. Holmes, J. R. Underwood, K. Beyreuther, C. L. Masters and G. Evin, “Processing of the Alzheimer’s Disease Amyloid Precursor Protein in Pichia Pastoris: Immunodetection of Alpha-, Beta- and Gamma-Secretase Products,” Biochemistry, Vol. 37, 1998, pp. 14958-14965.
[114] S. Ishiura, T. Tsukahara, T. Tabira and H. Sugita, “Putative N-Terminal Splitting Enzyme of Amyloid A4 Peptides Is the Multicatalytic Proteinase, Ingensin, Which Is Widely Distributed in Mammalian Cells,” FEBS Letters, Vol. 257, 1989, pp. 388-392.
[115] K. Tagawa, T. Kunishita, K. Maruyama, K. Yoshikawa, E. Kominami, T. Tsuchiya, K. Suzuki, T. Tabira, H. Sugita and S. Ishiura, “Alzheimer’s Disease Amyloid Beta-Clipping Enzyme (APP Secretase): Identification, Purification and Characterization of the Enzyme,” Biochemical and Biophysical Research Communications, Vol. 177, 1991, pp. 377-387.
[116] J. R. McDermott and A. M. Gibson, “The Processing of Alzheimer A4/Beta-Amyloid Protein Precursor: Identification of a Human Brain Metallopeptidase Which Cleaves –Lys-Leu- in a Model Peptide,” Biochemical and Biophysical Research Communications, Vol. 179, 1991, pp. 1148-1154.
[117] C. Schonlein, J. Loffler and G. Huber, “Purification and Characterization of a Novel Metalloprotease from Human Brain with the Ability to Cleave Substates Derived from the N-Terminus of Beta-Amyloid Protein,” Biochemical and Biophysical Research Communications, Vol. 201, 1994, pp. 45-53.
[118] S. J. Fuller, E. Storey, Q. X. Li, A. I. Smith, K. Beyreuther and C. L. Masters, “Intracellular Production of Beta A4 Amyloid of Alzheimer’s Disease: Modulation by Phosphoramidon and Lack of Coupling to the Secretion of the Amyloid Precursor Protein,” Biochemistry, Vol. 34, 1995, pp. 8091-8098.
[119] G. Evin, R. Cappai, Q. X. Li, J. G. Culvenor, D. H. Small, K. Beyreuther and C. L. Masters, “Candidate Gamma-Secretases in the Generation of the Carboxyl Terminus of the Alzheimer’s Disease Beta A4 Amyloid: Possible Involvement of Cathepsin D,” Biochemistry, Vol. 34, 1995, pp. 14185-14192.
[120] J. S. Munger, C. Haass, C. A. Lemere, G. P. Shi, W. S. Wong, D. B. Teplow, D. J. Selkoe and H. A. Chapman, “Lysosomal Processing of Amyloid Precursor Protein to A Beta Peptides: A Distinct Role For Cathepsin S,” Biochemical Journal, Vol. 311, 1995, pp. 299-305.
[121] E. A. Mackay, A. Ehrhard, M. Moniatte, C. Guenet, C. Tardif, C. Tarnus, O. Sorokine, B. Heintzelmann, C. Nay, J. M. Remy, J. Higaki, A. Van Dorsselaer, J. Wagner, C. Danzin and P. Mamont, “A Possible Role for Cathepsins D, E and B in the Processing of Beta-Amyloid Precursor Protein in Alzheimer's Disease,” European Journal of Biochemistry, Vol. 244, 1997, pp. 414-425.
[122] R. N. LePage, A. J. Fosang, S. J. Fuller, G. Murphy, G. Evin, K. Beyreuther, C. L. Masters and D. H. Small, “Gelatinase A Possesses a Beta-Secretase-Like Activity in Cleaving the Amyloid Protein Precursor of Alzheimer’s Disease,” FEBS Letters, Vol. 377, 1995, pp. 267-270.
[123] S. P. Little, E. P. Dixon, F. Norris, W. Buckley, G. W. Becker, M. Johnson, J. R. Dobins, T. Wyrick, J. R. Miller, W. MacKellar, D. Hepburn, J. Corvalan, D. McClure, X. Liu, D. Stephenson, J. Clemens and E. M. Johnstone, “Zyme, a Novel and Potentially Amyloidogenic Enzyme Cdna Isolated from Alzheimer’s Disease Brain,” Journal of Biological Chemistry, Vol. 272, 1997, pp. 25135-25142.
[124] J. D. Buxbaum, K. N. Liu, Y. Luo, J. L. Slack, K. L. Stocking, J. J. Peschon, R. S. Johnson, B. J. Castner, D. P. Cerretti and R. A. Black, “Evidence That Tumor Necrosis Factor Alpha Converting Enzyme Is Involved in Regulated Alpha-Secretase Cleavage of the Alzheimer Amyloid Protein Precursor,” Journal of Biological Chemistry, Vol. 273, 1998, pp. 27765-27767.
[125] A. Weidemann, K. Paliga, U. Drrwang, F. B. Reinhard, O. Schuckert, G. Evin and C. L. Masters, “Proteolytic Processing of the Alzheimer’s Disease Amyloid Precursor Protein Within Its Cytoplasmic Domain By Caspase-Like Proteases,” Journal of Biological Chemistry, Vol. 274, 1999, pp. 5823-5829.
[126] Y. H. Chong, J. M. Jung, W. Choi, C. W. Park, K. S. Choi and Y. H. Suh, “Bacterial Expression, Purification of Full Length and Carboxyl Terminal Fragment of Alzheimer Amyloid Precursor Protein and Their Proteolytic Processing By Thrombin,” Life Sciences, Vol. 54, 1994, pp. 1259-1268.
[127] Y. Yang, R. S. Turner and J. R. Gaut, “The Chaperone BiP/GRP78 Binds to Amyloid Precursor Protein and Decreases Abeta40 and Abeta42 Secretion,” Journal of Biological Chemistry, Vol. 273, 1998, pp. 25552-25555.
[128] J. P. Borg, S. W. Straight, S. M. Kaech, M. de Taddeo-Borg, D. E. Kroon, D. Karnak, R. S. Turner, S. K. Kim and B. Margolis, “Identification of an Evolutionarily Conserved Heterotrimeric Protein Complex Involved in Protein Targeting,” Journal of Biological Chemistry, Vol. 273, 1998, pp. 31633-31636.
[129] J. P. Borg, Y. Yang, M. de Taddeo-Borg, B. Margolis and R. S. Turner, “The X11 Alpha Protein Slows Cellular Amyloid Precursor Protein Processing and Reduces Abeta40 and Abeta42 Secretion,” Journal of Biological Chemistry, Vol. 273, 1998, pp. 14761-14766.
[130] P. Zheng, J. Eastman, S. Vande Pol and S. W. Pimplikar, “PAT1, a Microtubule-Interacting Protein, Recognizes the Basolateral Sorting Signal of Amyloid Precursor Protein,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, 1998; pp. 14745-14750.
[131] T. Watanabe, J. Sukegawa, I. Sukegawa, S. Tomita, K. Iijima, S. Oguchi, T. Suzuki, A. C. Nairn and P. Greengard, “A 127-kDa Protein (UV-DDB) Binds to the Cytoplasmic Domain of the Alzheimer’s Amyloid Precursor Protein,” Journal of Neurochemistry, Vol. 72, 1999, pp. 549-556.
[132] S. Tomita, T. Ozaki, H. Taru, S. Oguchi, S. Takeda, Y. Yagi, S. Sakiyama, Y. Kirino and T. Suzuki, “Interaction of a Neuron-Specific Protein Containing PDZ Domains with Alzheimer’s Amyloid Precursor Protein,” Journal of Biological Chemistry, Vol. 274, 1999, pp. 2243-2254.
[133] V. Y. Hook, C. Sei, S. Yasothornsrikul, T. Toneff, Y. H. Kang, S. Efthimiopoulos, N. K. Robakis and W. Van Nostrand, “The Kunitz Protease Inhibitor Form of the Amyloid Precursor Protein (KPI/APP) Inhibits the Proneuropeptide Processing Enzyme Prohormone Thiol Protease (PTP). Colocalization of KPI/APP and PTP in Secretory Vesicles,” Journal of Biological Chemistry, Vol. 274, 1999, pp. 3165-3172.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.