Share This Article:

Electronic Structure of Sodium Thiogermanate

Full-Text HTML XML Download Download as PDF (Size:5459KB) PP. 31-39
DOI: 10.4236/ojinm.2015.52004    3,111 Downloads   3,689 Views   Citations

ABSTRACT

Ab initio calculations of the band structure, total and partial densities of states and the spatial distribution of the electron charge density of crystalline Na2GeS3 are performed in the framework of density functional theory in the local density approximation for an exchange-correlation potential. According to the calculation results, sodium thiogermanate is a direct-gap crystal with the top of the valence band and the bottom of the conduction band at the point of the Brillouin zone. The calculated band gap is Eg= 2.51 eV. The nature of the components of the electronic states in different subbands of the valence band is determined. The calculated total density of states in the valence band of the crystal is compared with the known experimental X-ray photoelectron spectrum of Na2GeS3 glass. Based on the maps of the electron density distribution, the nature of the chemical bonds and high mobility of Na+ ions in Na2GeS3 crystal is analyzed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bletskan, D. , Vakulchak, V. and Kabatsii, V. (2015) Electronic Structure of Sodium Thiogermanate. Open Journal of Inorganic Non-metallic Materials, 5, 31-39. doi: 10.4236/ojinm.2015.52004.

References

[1] Yu, D.Y.W., Prikhodchenko, P.V., Mason, C.W., Batabyal, S.K., Sladkevich, J., Gun, S., Medvedev, A.G. and Lev, O. (2013) High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries. Nature Communication, 4, 1-7.
http://dx.doi.org/10.1038/ncomms3922
[2] Ribes, M., Ravaine, D. and Souquet, J.L. (1979) Synthese, Structure et Conduction Ionique de Nouveaux Verres a Base de Sulfures. Revue de Chimie Minerale, 16, 339-348.
[3] Ribes, M., Barrau, B. and Souquet, J.L. (1980) Sulfide Glasses: Glass Forming Region, Structure and Ionic Conduction of Glasses in Na2S-XS2 (X = Si; Ge), Na2S-P2S5 and Li2S-GeS2 Systems. Journal of Non-Crystalline Solids, 38-39, 271-276.
http://dx.doi.org/10.1016/0022-3093(80)90430-5
[4] Barrau, B., Ribes, M., Maurin, M., Kone, A. and Souquet, J.L. (1980) Glass Formation, Structure and Ionic Conduction in the Na2S-GeS2 System. Journal of Non-Crystalline Solids, 37, 1-14.
http://dx.doi.org/10.1016/0022-3093(80)90473-1
[5] Susman, S., Boehm, L., Volin, K.J. and Delbecq, C.J. (1981) A New Method for the Preparation of Fast-Conducting, Reactive Glass Systems. Solid State Ionics, 5, 667-669.
http://dx.doi.org/10.1016/0167-2738(81)90342-8
[6] Мykaylo, I.L.B., Lazarev, V., Pеrеsh, E.Yu. and Kish, Z.Z. (1989) Phase Equilibria in Na2S(Se)-GeS2(Se2) Systems. Russian Journal of Inorganic Chemistry, 39, 2319-2323.
[7] Olivier-Fourcade, J., Philippot, E., Ribes, M. and Maurin, M. (1972) Structure Cristalline du Thiogermanate de Sodium Na2GeS3. Comptes Rendus de l’Académie des Sciences, Serie C, Sciences Chimiques, 274, 1185-1187.
[8] Foix, D., Martinez, H., Pradel, A., Ribes, M. and Gonbeau, D. (2006) XPS Valence Band Spectra and Theoretical Calculations for Investigations on Thiogermanate and Thiosilicate Glasses. Chemical Physics, 323, 606-616.
http://dx.doi.org/10.1016/j.chemphys.2005.10.037
[9] Foix, D., Gonbeau, D., Granier, D., Pradel, A. and Ribes, M. (2002) Electronic Structure of Thiogermanate and Thiosilicate Glasses: Experimental (XPS) and Theoretical (ab Initio) Characterizations. Solid State Ionics, 154-155, 161-173.
http://dx.doi.org/10.1016/S0167-2738(02)00424-1
[10] Dittmar, G. and Schäfer, H. (1975) Die Kristallstrukturvon H.T.-GeS2. Acta Crystallographica B, 31, 2060-2064.
[11] Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
http://dx.doi.org/10.1103/PhysRev.136.B864
[12] Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
http://dx.doi.org/10.1103/PhysRev.140.A1133
[13] Ceperley, D.M. and Alder, B.J. (1980) Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 45, 566-569.
http://dx.doi.org/10.1103/PhysRevLett.45.566
[14] Perdew, J.P. and Zunger, A. (1981) Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 23, 5048-5079.
http://dx.doi.org/10.1103/PhysRevB.23.5048
[15] Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D. (2002) The SIESTA Method for ab Initio Order-N Materials Simulation. Journal of Physics: Condensed Matter, 14, 2745-2779.
http://dx.doi.org/10.1088/0953-8984/14/11/302
[16] http://departments.icmab.es/leem/siesta/
[17] Bachelet, G.B., Hamann, D.R. and Schlüter, M. (1982) Pseudopotentials That Work: From H to Pu. Physical Review B, 26, 4199-4228.
http://dx.doi.org/10.1103/PhysRevB.26.4199
[18] Hartwigsen, C., Goedecker, S. and Hutter, J. (1998) Relativistic Separable Dual-Space Gaussian Pseudopotentials from H to Rn. Physical Review B, 58, 3641-3662.
http://dx.doi.org/10.1103/PhysRevB.58.3641
[19] Chadi, D.J. and Cohen, M.L. (1973) Special Points in the Brillouin Zone. Physical Review B, 8, 5747-5753.
http://dx.doi.org/10.1103/PhysRevB.8.5747
[20] Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188- 5192.
http://dx.doi.org/10.1103/PhysRevB.13.5188

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.