White Matter Changes in Alzheimer’s Disease Revealed by Diffusion Tensor Imaging with TBSS

DOI: 10.4236/wjns.2015.51007   PDF   HTML   XML   3,485 Downloads   4,259 Views   Citations


Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder characterized by impairments in multiple cognitive domains and it is hard to diagnose in early stage because it’s not easy to recognize and develop slowly. In this study, we try to evaluate the difference of white matter between AD and health volunteers using diffusion tensor imaging (DTI) and try to provide some evidence for diagnose AD in early stage. Twelve elderly Chinese patients with AD and twelve healthy volunteers were recruited and underwent DTI. The raw diffusion data were dealt with the toolkit of FSL image post-processing. Fractional anisotrogy (FA) data were then carried out by using tract-based spatial statistics (TBSS). The result showed that the FA of cingulum, hippocampus, corticospinal tract, and inferior fronto-occipital fasciculus significantly reduced in AD patients than that of volunteers. This indicated that the integrity of white matter tracts in these regions with AD was disturbed. On the other hand, the FA of other encephalic regions had no discrepancy compared with that of healthy volunteers. FA values were found reduced significantly in AD patients, especially in the posterior of the brain. These findings may provide image methods to diagnose patients with early stage of AD.

Share and Cite:

Chen, H. , Wang, K. , Yao, J. , Dai, J. , Ma, J. , Li, S. , Ai, L. , Chen, Q. , Chen, X. and Zhang, Y. (2015) White Matter Changes in Alzheimer’s Disease Revealed by Diffusion Tensor Imaging with TBSS. World Journal of Neuroscience, 5, 58-65. doi: 10.4236/wjns.2015.51007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dubois, B., Feldman, H.H., Jacova, C., et al. (2007) Research Criteria for the Diagnosis of Alzheimer’s Disease: Revising the NINCDS-ADRDA Criteria. Lancet Neurology, 6, 734-746.
[2] Alzheimer’s Association (2011) Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 7, 208-244. http://dx.doi.org/10.1016/j.jalz.2011.02.004
[3] Kloppel, S., Stonnington, C.M., Chu, C., et al. (2008) Automatic Classification of MR Scans in Alzheimer’s Disease. Brain, 131, 681-689. http://dx.doi.org/10.1093/brain/awm319
[4] Teipel, S.J., Stahl, R., Dietrich, O., et al. (2007) Multivariate Network Analysis of Fiber Tract Integrity in Alzheimer’s Disease. NeuroImage, 34, 985-995. http://dx.doi.org/10.1016/j.neuroimage.2006.07.047
[5] Brun, A. and Englund, E. (1986) A White Matter Disorder in Dementia of the Alzheimer Type: A Patho-Anatomical Study. Annals of Neurology, 19, 253-262. http://dx.doi.org/10.1002/ana.410190306
[6] Salat, D.H., Tuch, D.S., van der Kouwe, A.J., et al. (2010) White Matter Pathology Isolates the Hippocampal Formation in Alzheimer’s Disease. Neurobiol Aging, 31, 244-256.
[7] Francesca, B., Marina, S., Maria, G.P., Monia, C., Ludovica, G., Ivana, M., Federica, P., Elena, C., Raffaello, N. and Mario, C. (2013) Neuroinflammation and Brain Functional Disconnection in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 5, 81.
[8] Villain, N., Desgranges, B., Viader, F., et al. (2008) Relationships between Hippocampal Atrophy, White Matter Disruption, and Gray Matter Hypometabolism in Alzheimer’s Disease. Neuroscience, 28, 6174-6181. http://dx.doi.org/10.1523/JNEUROSCI.1392-08.2008
[9] Julio, A.C. and Perter, J.N. (2014) Diffusio Tensor Imaging in Alzherimer’s Disease: Insights into the Limbic-Diencephalic Network and Methodological Considerations. Frontiers in Aging Neuroscience.
[10] Ashburner, J. and Friston, K.J. (2000) Voxel-Based Morphometry—The Methods. NeuroImage, 11, 805-821. http://dx.doi.org/10.1006/nimg.2000.0582
[11] Bookstein, F.L. (2001) “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images. NeuroImage, 14, 1454-1462. http://dx.doi.org/10.1006/nimg.2001.0770
[12] Schwarz, C.G., Reid, R.I., Gunter, J.L., Senjem, M.L., Przybelski, S.A., Zuk, S.M., Whitwell, J.L., Vemuri, P., Josephs, K.A., Kantarci, K., Thompson, P.M., Petersen, R.C. and Jack Jr., C.R., Alzheimer’s Disease Neuroimaging Initiative (2014) Improved DTI Registration Allows Voxel-Based Analysis That Outperforms Tract-Based Spatial Statistics. NeuroImage, 94, 65-78.
[13] Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., et al. (2006) Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data. NeuroImage, 31, 1487-1505. http://dx.doi.org/10.1016/j.neuroimage.2006.02.024
[14] Dacosta-Aguayo, R., Gra?a, M., Fernández-Andújar, M., López-Cancio, E., Cáceres, C., Bargalló, N., Barrios, M., Clemente, I., Monserrat, P.T., Sas, M.A., Dávalos, A., Auer, T. and Mataró, M. (2014) Structural Integrity of the Contralesional Hemisphere Predicts Cognitive Impairment in Ischemic Stroke at Three Months. PLoS ONE, 9, e86119. http://dx.doi.org/10.1371/journal.pone.0086119
[15] Perea, R.D., Rada, R.C., Wilson, J., Vidoni, E.D., Morris, J.K., Lyons, K.E., Pahwa, R., Burns, J.M. and Honea, R.A. (2013) A Comparative White Matter Study with Parkinson’s Disease, Parkinson’s Disease with Dementia and Alzheimer’s Disease. Journal of Alzheimer’s Disease Parkinsonism, 3, 123.
[16] Scanlon, C., Mueller, S.G., Cheong, I., Hartig, M., Weiner, M.W. and Laxer, K.D. (2013) Grey and White Matter Abnormalities in Temporal Lobe Epilepsy with and without Mesial Temporal Sclerosis. Journal of Neurology, 260, 2320-2329. http://dx.doi.org/10.1007/s00415-013-6974-3
[17] Shen, Y., Bai, L., Gao, Y., Cui, F., Tan, Z., Tao, Y., Sun, C. and Zhou, L. (2014) Depressive Symptoms in Multiple Sclerosis from an in Vivo Study with TBSS. BioMed Research International, 2014, 1-8. http://dx.doi.org/10.1155/2014/148465
[18] Zhu, Y., Li, Z., Bai, L., Tao, Y., Sun, C., Li, M., Zheng, L., Zhu, B., Yao, J., Zhou, H. and Zhang, M. (2014) Loss of Microstructural Integrity in the Limbic-Subcortical Networks for Acute Symptomatic Traumatic Brain Injury. BioMed Research International, 2014, 1-7.
[19] Roalf, D.R., Ruparel, K., Verma, R., Elliott, M.A., Gur, R.E. and Gur, R.C. (2013) White Matter Organization and Neurocognitive Performance Variability in Schizophrenia. Schizophrenia Research, 143, 172-178. http://dx.doi.org/10.1016/j.schres.2012.10.014
[20] Liu, J., Yin, C., Xia, S., Jia, L., Guo, Y., Zhao, Z., Li, X., Han, Y. and Jia, J. (2013) White Matter Changes in Patients with Amnestic Mild Cognitive Impairment Detected by Diffusion Tensor Imaging. PLoS ONE, 8, e59440. http://dx.doi.org/10.1371/journal.pone.0059440
[21] Medin, D., de Toledo-Morrell, L., Urresta, F., Gabrieli, J.D.E., Moseley, M., Fleischman, D., et al. (2006) White Matter Changes in Mild Cognitive Impairment and AD: A Diffusion Tensor Imaging Study. Neurobiology of Aging, 27, 663-672. http://dx.doi.org/10.1016/j.neurobiolaging.2005.03.026
[22] Chua, T.C., Wen, W., Slavin, M.J. and Sachdev, P.S. (2008) Diffusion Tensor Imaging in Mild Cognitive Impairment and Alzheimer’s Disease: A Review. Current Opinion in Neurology, 21, 83-92.
[23] Rose, S.E., Janke, A.L. and Chalk, J.B. (2008) Gray and White Matter Changes in Alzheimer’s Disease: A Diffusion Tensor Imaging Study. Journal of Magnetic Resonance Imaging, 27, 20-26.
[24] Nakata, Y., Sato, N., Nemoto, K., Abe, O., Shikakura, S., Arima, K., et al. (2009) Diffusion Abnormality in the Posterior Cingulum and Hippocampal Volume: Correlation with Disease Progression in Alzheimer’s Disease. Magnetic Resonance Imaging, 27, 347-354. http://dx.doi.org/10.1016/j.mri.2008.07.013
[25] Ashburner, J. and Friston, K.J. (2000) Voxel-Based Morphometry the Methods. NeuroImage, 11, 805-821. http://dx.doi.org/10.1006/nimg.2000.0582
[26] Hugenschmidt, C.E., Peiffer, A.M., Kraft, R.A., Casanova, R., Deibler, A.R., Burdette, J.H., et al. (2007) Relating Imaging Indices of White Matter Integrity and Volume in Healthy Older Adults. Cerebral Cortex, 18, 433-442. http://dx.doi.org/10.1093/cercor/bhm080
[27] Damoiseaux, J.S., Smith, S.M., Witter, M.P., Sanz-Arigita, E.J., Barkhof, F., Scheltens, P., et al. (2009) White Matter Tract Integrity in Aging and Alzheimer’s Disease. Human Brain Mapping, 30, 1051-1059. http://dx.doi.org/10.1002/hbm.20563
[28] Zhang, Y., Sehuff, N., Jahng, G.H., Bayne, W., Mori, S., Schad, L., et al. (2007) Diffusion Tensor Imaging of Cingulum Fibers in Mild Cognitive Impairment and Alzhelmer Disease. Neurology, 68, 13-19. http://dx.doi.org/10.1212/01.wnl.0000250326.77323.01
[29] Rose, S.E., McMahon, K.L., Janke, A.L., O’Dowd, B., de Zubicaray, G., Strudwick, M.W. and Chalk, J.B. (2006) Diffusion Indices on Magnetic Resonance Imaging and Neuropsychological Performance in Amnestic Mild Cognitive Impairment. Journal of Neurology, Neurosurgery & Psychiatry, 77, 1122-1128.
[30] Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N. and Capelle, L. (2005) New Insights into the Anatomo-Functional Connectivity of the Semantic System: A Study Using Cortico-Subcortical Electrostimulations. Brain, 128, 797-810. http://dx.doi.org/10.1093/brain/awh423
[31] Choi, S.J., Lim, K.O., Monteiro, L. and Reisberg, B. (2005) Diffusion Tensor Imaging of Frontal White Matter Microstructure in Early Alzheimer’s Disease: A Preliminary Study. Journal of Geriatric Psychiatry and Neurology, 18, 12-19. http://dx.doi.org/10.1177/0891988704271763
[32] Teipel, S., Ehlers, I., Erbe, A., Holzmann, C., Lau, E., Hauenstein, K. and Berger, C. (2014) Structural Connectivity Changes Underlying Altered Working Memory Networks in Mild Cognitive Impairment: A Three-Way Image Fusion Analysis. Journal of NeuroImaging. http://dx.doi.org/10.1111/jon.12178

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.