Low temperature magnetoresistive effects and coulomb blockade in La0.7Ca0.3MnO3 nanoparticles synthesis by auto-Ignition method
Aamir Minhas Khan, Arif Mumtaz, S. K Hassnain, A. Ul Haq
.
DOI: 10.4236/ns.2011.36069   PDF    HTML     4,949 Downloads   9,317 Views   Citations

Abstract

Electrical transport properties of the La0.7Ca0.3MnO3nanoparticles have been inves-tigated in the temperature range 300 to 9 K as a function of magnetic field. Samples were pre-pared by auto-ignition method. In low tempera-ture regime from 40 to 9 K, an increase in the resistivity has been observed. This effect is found to decrease as magnetic field is increased. It is assumed that these effects are due to the magnetic contacts between the nanoparticles.

Share and Cite:

Khan, A. , Mumtaz, A. , Hassnain, S. and Haq, A. (2011) Low temperature magnetoresistive effects and coulomb blockade in La0.7Ca0.3MnO3 nanoparticles synthesis by auto-Ignition method. Natural Science, 3, 496-501. doi: 10.4236/ns.2011.36069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Baibich, M.N., Broto, J.M., Fert, A., Nguyen, Van Dau F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J. (1988) Giant magnetoresistance on (001)Fe/ (001) Crmagnetic superlattices. Physical Review Letters, 61, 2472-2475. doi:10.1103/PhysRevLett.61.2472
[2] Berkowitz, A.E., Mitchell, J.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A. and Thomas, G. (1992) Giant magnetoresistance in heterogeneous Cu–Co alloys. Physical Review Letters, 68, 3745-3748. doi:10.1103/PhysRevLett.68.3745
[3] Xiao, J.Q., Jiang, J.S. and Chien, C.L. (1992) Giant magnetoresistance in nonmultilayermagnetic systems. Physical Review Letters, 68, 3749-3752. doi:10.1103/PhysRevLett.68.3749
[4] Moodera, J.S., Kinder, L.S., Wong, T.M. and Meservey, R. (1995) Large magnetoresistance at room temperature in ferromagnetic thin films tunnel junctions. Physical Review Letters, 74, 3273-3276. doi:10.1103/PhysRevLett.74.3273
[5] McComick, P.G. and Street, R. (2003) Surface spin disorder and exchange bais in La0.7Ca0.3MnO3 nanoparticles synthesised by mechanochemical prossesing. Reviews on Advanced Materials Science, 5, 76-81.
[6] Garc?′a-Herna′ndez, M., Guinea, F., de Andre′s, A., Mart?′nez, J.L., Prieto, C. and Va′zquez L. (2000) Coulomb blockade versus intergrain resistance in colossal magnetoresistive manganite granular film. Physical Review B, 61, 9549-9552.
[7] von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. and Samwer, K. (1993) Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Physical Review Letters, 71, 2331-2334. doi:10.1103/PhysRevLett.71.2331
[8] Jonker, G.H. and Van Santen, J.H. (1950) Ferromagnetic compounds of manganese with perovskite structure. Physica, 16, 337-345. doi:10.1016/0031-8914(50)90033-4
[9] Wollan, E.O. and Koehler, W.C. (1955) Neutron diffraction studies of the magnetic properties of the series of perovskite-type compounds [(1 ? x)La, xCa]MnO3. Physical Review, 100, 545-563. doi:10.1103/PhysRev.100.545
[10] Shankara, K.S., Kara, S., Subbannab, G.N. and Raychaudhuria A.K. (2004) Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO3). Solid State Communications, 129, 479-483.
[11] Lu, Y. et al. (1996) Physical Review B, 54, R8357.
[12] Sun, J.Z. et al. (1997) Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions. Applied Physics Letters, 70, 1769.
[13] Rao, C.N.R. and Raveau, R. (1998) Colossal magnetoresistance, charge ordering and related properties of manganese oxides. 1st Edition, World Scientific Publishing Co. Pte. Ltd, Singapore.
[14] Chahara, K., Ohno, T., Kasai, M., Kozono, Y. (1993) Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Applied Physics Letters, 63, 1990. doi:10.1063/1.110624
[15] Siwach, P.K., Singh, H.K. and Srivastava, O.N. (2008) Low field magnetotransport in manganites. Journal of Physics Condensed Matter, 20, 1-43. doi:10.1088/0953-8984/20/27/273201
[16] Niebieskikwiat, D., Sa′nchez, R.D., Lamas D.G. and Caneiro, A. (2003) Tunneling barrier in nanoparticle junctions of La2/3(Ca,Sr)1/3MnO3: Nonlinear current– voltage characteristics. Journal of Applied Physics, 93, 6305-6310. doi:10.1063/1.1568156
[17] Lopez-Quintela, M.A., Hueso, L.E., Rivas, J. and Rivadulla F., (2003) Intergranular magnetoresistance in nanomanganites. Nanotechnology, 14, 212-219. doi:10.1088/0957-4484/14/2/322
[18] Zhao, Y.G. (2005) Electrical transport and magnetic properties of nanostructured La0.67Ca0.33MnO3. Applied Physics A, 81, 607-610.
[19] Garcia-Hemandez, M., de Andres, A., Martinez, J.L., Prieto, C., Munoz. A., Vazquez, L. and Superfi, Y. (1999) Intergranular coulomb blockade in thin films of magnetoresistive manganites. Vacio, 9, 44-47. http://redalyc.uaemex.mx/redalyc/pdf/942/94200911.pdf
[20] Krishnamoorthy, C., Sethupathi, K. and Sankaranarayanan, V. (2004) Synthesis, Characterisation and Electrical Transport Properties of Manganite Nanoparticles. International Symposium of Research Students on Material Science and Engineering, 20-22 December 2004, Chennai, India. http://metallurgy.iitm.ac.in/isrs/isrs04/cd/content/Papers/NM/PO-NM-8.pdf
[21] Mahesh, R., Mahendiran, R., Raychaudhuri, A.K. and Raom, C.N.R. (1996) Effect of particle size on the giant magnetoresistance of La0.7Ca0.3MnO3. Applied Physics Letters, 68, 2291-2293. doi:10.1063/1.116167
[22] Zhang, N., Ding, W., Zhong, W., Xing, D. and Du, Y. (1997) Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Physical Review B, 56, 8138-8142.
[23] Roy, B., Poddar, A. and Das, S. (2006) Electrical transport properties and magnetic cluster glass behavior of Nd0.7Sr0.3MnO3 nanoparticles. Journal of Applied Physics, 100, 104318.
[24] Mitani, S., Takahashi, S., Takanashi, K., Yakushiji, K., Maekawa, S. and Fujimori, H. (1998) Enhanced magnetoresistance in insulating granular systems: evidence for higher-order tunneling. Physical Review Letters, 81, 2799-2802. doi:10.1103/PhysRevLett.81.2799
[25] Sheng, P., Abeles, B. and Arie, Y. (1973) Hopping Conductivity in Granular Metals. Physical Review Letters, 31, 44-47. doi:10.1103/PhysRevLett.31.44
[26] Balcells, L., Martinez, B., Sandiumenge, F. and Fontcuberta, J. (2000) Low-temperature magnetotransport in nanometric half-metallic ferromagnetic perovskites. Journal of Physics: Condensed Matter, 12, 3013-3018. doi:10.1088/0953-8984/12/13/311
[27] Zener, C. (1951) Interaction between the d-shells in the transition metals: II. Ferromagnetic compounds of manganese with perovskite structure. Physical Review, 82, 403-405. doi:10.1103/PhysRev.82.403
[28] Anderson, P.W. and Hasegawa, H. (1955) Considerations on Double Exchange. Physical Review, 100, 675-681.
[29] A.de Andres, M., Garcia-Hernandez, J.L.M. and Prieto, C. (1999) Low-temperature magnetoresistance in polycrystalline manganites: connectivity versus grain size. Applied Physics Letters, 74, 3884.
[30] Guinea, F. (1998) Spin-flip scattering in magnetic junctions. Physical Review B, 58, 9212.
[31] Caldero′n, M. J., Brey, L. and Guinea, F. (1999) Surface electronic structure and magnetic properties of doped manganites. Physical Review B, 60, p.6698. doi:10.1103/PhysRevB.60.6698
[32] Ott, F., Barberan, S., Lunney, J. G., Coey, J. M. D., Berthet, P., de Leon-Guevara, A.M. and Revcolevschi, A. (1998) Quantized conductance in a contact between metallic oxide crystals. Physical Review B, 58, 4656. doi:10.1103/PhysRevB.58.4656

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.