Advances in Assessment of Geothermal Resources of South America

DOI: 10.4236/nr.2014.514077   PDF   HTML   XML   4,833 Downloads   5,687 Views   Citations


Updated data for 1417 localities have been assembled for purposes of assessments of geothermal resources in South America. Analyses of these data sets have allowed improved estimates of geothermal resource base and recoverable resources for thirteen countries in the continent. The results obtained have also allowed identification of more than 20 crustal blocks where the resource base per unit area (referred to the accessible depth limit of 3 km) is in the range of 100 to 1000 Giga Joules, while the recoverable resources per unit area are in the range of 1 to 100 Giga Joules. Most of the high temperature resources occur within regions of recent tectonic activities in southern and central Chile, highlands regions in Bolivia, and several localities along the magmatic arc covering western Ecuador, central volcanic belt of Colombia and northern Venezuela. In addition, isolated pockets of geothermal resources have been identified along the eastern Andean belt of Peru. There are indications of occurrence of medium and low temperature geothermal resources at depths of 1 to 3 km in several regions in the eastern sectors of the continent, mainly in the northeastern and central parts of Brazil. In addition, considerable progress has been made in assessments of low temperature resources associated with deep fracture systems in Precambrian terrains. Progress has also been achieved in assessment of low temperature resources in deep aquifers of Paleozoic sedimentary basins. The results of such estimates are currently being considered for planning large-scale exploitation of the Guarani aquifer system, which spans over large areas of western Uruguay, northern Argentina and southern Brazil.

Share and Cite:

Vieira, F. and Hamza, V. (2014) Advances in Assessment of Geothermal Resources of South America. Natural Resources, 5, 897-913. doi: 10.4236/nr.2014.514077.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Battocletti, L. (1999) Database of Geothermal Resources in Latin American & the Caribbean. Report for Sandia National Laboratories, Bob Lawrence & Associates Inc., Contract No. AS-0989.
[2] Cardoso, R.R., Hamza, V.M. and Alfaro, C. (2010) Geothermal Resource Base for South America: A Continental Perspective. Proceedings of the World Geothermal Congress, Bali, 25-29 April 2010.
[3] Huttrer, G.W. (2001) The Status of World Geothermal Power Generation 1995-2000. Geothermics, 30, 7-27.
[4] Barbier, E. (2002) Geothermal Energy Technology and Current Status: An Overview. Renewable and Sustainable Energy Reviews, 6, 3-65.
[5] Lund, J.W. and Freeston, D.H. (2001) World-Wide Direct Uses of Geothermal Energy 2000. Geothermics, 30, 29-68.
[6] Miranda, F.J. and Pesce, A.H. (1997) Argentina Geothermal Resources: New Trends in Development. GRC Transactions, 21, 337-339.
[7] Pesce, A.H. (1995) Argentina Country Update. Proceedings of the World Geothermal Congress, Florence, 35-43.
[8] Pesce, A.H. (2000) Argentina Country Update. Proceedings of the World Geothermal Congress, Kyushu-Tohoku, 28 May-10 June 2000, 35-43.
[9] Pesce, A.H. (2005) Argentina Country Update. Proceedings of the World Geothermal Congress, Antalya, 24-29 April 2005.
[10] Delgadillo, T.Z. (1997) Situación Actual de Los Proyectos Geotérmicos en Bolivia. Seminar Desarrollo de los Recursos Geotérmicos en América Latina y el Caribe, Comisión Económica para América Latina y el Caribe (CEPAL), Santiago del Chile, 10 al 12 de noviembre de 1997.
[11] Hamza, V.M., Eston, S.M. and Araújo, R.L.C. (1978) Geothermal Energy Prospects in Brazil: A Preliminary Analysis. Pure and Applied Geophysics, 117, 180-195.
[12] Hamza, V.M. and Eston, S.M. (1983) Assessment of Geothermal Resources of Brazil—1981. Zentralblatt fur Geologie und Palaontologie, 1, 128-155.
[13] Eston, S.M. and Hamza, V.M. (1984) Energia Geotérmica no Brasil: Avaliacao de Recursos, Avancos Tecnológicos e Perspectivas de Utilizacao. Simpósio Brasileiro Sobre Técnicas Exploratórias Aplicadas á Geologia, 1, 109-132.
[14] Hamza, V.M., Frangipani, A. and Becker, E.A. (1990) Development of Geothermal Projects in Brazil: Current State and Perspectives. Proceedings of the International Seminar on Geothermal Perspectives for Latin America and Caribe, 37-52.
[15] Hamza, V.M., Gomes, A.J.L. and Ferreira, L.E.T. (2005) Status Report on Geothermal Energy Developments in Brazil. Proceedings of the World Geothermal Congress, Antalya, 24-29 April 2005.
[16] Hamza, V.M., Cardoso, R.R., Gomes, A.J.L. and Alexandrino, C.H. (2010) Brazil: Country Update. Proceedings of the World Geothermal Congress, Bali, 25-29 April 2010.
[17] Lahsen, A. (1988) Chilean Geothermal Resources and Their Possible Utilization. Geothermics, 17, 401-410.
[18] Munoz, M. and Hamza, V.M. (1993) Heat Flow and Temperature Gradients in Chile. Studia geophysica et geodaetica, 37, 315-348.
[19] Lahsen, A., Sepúlveda, F., Rojas, J. and Palacios, C. (2005) Present Status of Geothermal Exploration in Chile. Proceedings of the World Geothermal Congress, Antalya, 24-29 April 2005.
[20] Alfaro, C., Bernal, N., Ramírez, G. and Escovar, R. (2000) Colombia, Country Update. Proceedings of the World Geothermal Congress, Kyushu, 28 May-10 June 2000, 45-50.
[21] Alfaro, C., Alvarado, I., Quintero, W., Hamza, V.M., Vargas, C. and Briceno, L.A. (2011) Preliminary Map of Geothermal Gradients in Colombia. Proceedings of the 12th Colombian Geological Congress, Paipa, 1-6.
[22] Almeida, E. (1988) Los Recursos Geotérmicos del Ecuador Continental. Unpublished Interim Report, INECEL, Ecuador.
[23] Beate, B. and Salgado, R. (2005) Geothermal Country Update for Ecuador, 2000-2005. Proceedings of the World Geothermal Congress, Antalya, 24-29 April 2005.
[24] Beate, B. and Salgado, R. (2010) Geothermal Country Update for Ecuador, 2005-2010. Proceedings of the World Geothermal Congress, Bali, 25-29 April 2010.
[25] Diaz, H. and Guillermo, N. (1988) Potential for Developing Small Geothermal Power Stations in Peru. Geothermics, 17, 381-390.
[26] Parodi, I.A. (1975) Feasibility of the Development of the Geothermal Energy in Perú—1975. Proceedings of the Lawrence Berkeley Laboratory-Second United Nations Symposium, Berkeley, 20-29 May 1975, 227-231.
[27] Almandoz, A.H. and Rojas, J.J. (1988) Geothermal Prospects in the Central Region of Sucre State, Venezuela. Geothermics, 17, 369-375.
[28] Urbani, P.F. (1987) A Review of Venezuelan Geothermics. Brazilian Geophysical Journal, 5, 153-164.
[29] Hamza, V.M. and Munoz, M. (1996) Heat Flow Map of South America. Geothermics, 25, 599-646.
[30] Hamza, V.M., Silva Dias, F.J.S., Gomes, A.J.L. and Delgadilho Terceros, Z.G. (2005) Numerical and Functional Representations of Regional Heat Flow in South America. Physics of the Earth and Planetary Interiors, 152, 223-256.
[31] Beck, A.E. (1965) Techniques of Measuring Heat Flow on Land. In: Lee, W.H.K., Ed., Terrestrial Heat Flow, Monograph No. 8, American Geophysical Union, Washington DC, 24-57.
[32] Bullard, E.C. (1939) Heat Flow in South Africa. Proceedings of the Royal Society A, 173, 474-502.
[33] Carvalho, H.S. and Vacquier, V. (1977) Method for Determining Terrestrial Heat Flow in Oil Fields. Geophysics, 42, 584-593.
[34] Gomes, A.J.L. and Hamza, V.M. (2005) Geothermal Gradient and Heat Flow in the State of Rio de Janeiro. RevistaBrasileira de Geofisica, 23, 325-347.
[35] Santos, J., Hamza, V.M. and Shen, P.Y. (1986) A Method for Measurement of Terrestrial Heat Flow Density in Water Wells. Revista Brasileira de Geofísica, 4, 45-53.
[36] Swanberg, C.A. and Morgan, P. (1978) The Linear Relation between Temperatures Based on the Silica Content of Groundwater and Regional Heat Flow: A New Heat Flow Map of the United States. Pure and Applied Geophysics, 117, 227-241.
[37] Hurter, S.J. (1986) The Use of Chemical Geothermometry and Heat Loss Models in Estimating Terrestrial Heat Flow for Low Temperature Hydrothermal Systems. Revista Brasileira de Geofísica, 6, 33-42.
[38] Chapman, D. and Pollack, H. (1975) Global Heat Flow: A New Look. Earth and Planetary Science Letters, 28, 23-32.
[39] Pollack, H.N., Hurter, S.J. and Johnson, J.R. (1993) Heat Flow from the Earth’s Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31, 267-280.
[40] Cardoso, R.R. (2006) Analytic Representation of the Global Thermal Field by the Method of Spherical Harmonics (in Portuguese). Master’s Thesis, Observatório Nacional—MCT, Rio de Janeiro, 1-147.
[41] Hamza, V.M., Cardoso, R.R. and Ponte Neto, C.F. (2008) Spherical Harmonic Representation of Earth’s Conductive Heat Flow. International Journal of Earth Sciences, 97, 205-226.
[42] Mooney, W.D., Laske, G. and Masters, T.G. (1998) Crust 5.1: A Global Crustal Model at 5°×5°. Journal of Geophysical Research, 103, 727-747.
[43] Bassin, C., Laske, G. and Masters, G. (2000) The Current Limits of Resolution for Surface Wave Tomography in North America. Eos, Transactions American Geophysical Union, 81, F897.
[44] Muffler, L.J.P. and Cataldi, R. (1978) Methods for Regional Assessment of Geothermal Resources. Geothermics, 7, 53-89.
[45] Cermak, V., Bodri, L., Rybach, L. and Buntebarth, G. (1990) Relationship between Seismic Velocity and Heat Production: Comparison of Two Sets of Data and Test of Validity. Earth and Planetary Science Letters, 99, 48-57.
[46] Uyeda, S., Watanabe, T. and Volponi, F. (1978) Report of Heat Flow Measurements in San Juan and Mendoza, Argentina. Bulletin of the Earthquake Research Institute, 53, 165-172.
[47] Sigismondi, M.E. (2012) Estudio de la deformacion litosférica de la cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexion. Ph.D. Thesis, Universidad de Buenos Aires, Buenos Aires, 1-367.
[48] Henry, S.G. (1981) Terrestrial Heat Flow Overlying the Andean Subduction Zone. Ph.D. Thesis, University of Michigan, Ann Arbour.
[49] Henry, S.G. and Pollack, H.N. (1988) Terrestrial Heat Flow above the Andean Subduction Zone in Bolivia and Peru. Journal of Geophysical Research, 93, 15153-15162.
[50] Uyeda, S., Watanabe, T., Kausel, E., Kubo, M. and Yashiro, Y. (1978) Report of Heat Flow Measurements in Chile. Bulletin of the Earthquake Research Institute, 53, 131-163.
[51] Sass, J.H., Munroe, R.J. and Moses Jr., T.H. (1974) Heat Flow from Eastern Panama and Northeastern Colombia. Earth and Planetary Science Letters, 21, 134-142.
[52] Uyeda, S., Watanabe, T., Ozasayama, Y. and Ibaragi, K. (1980) Report of Heat Flow Measurements in Peru and Ecuador. Bulletin of the Earthquake Research Institute, 55, 55-74.
[53] Kuhn, C.A. (1991) The Geological Evolution of the Paraguayan Chaco. Ph.D. Thesis, Texas Technical University, Austin, 185.
[54] Uyeda, S. and Watanabe, T. (1982) Terrestrial Heat Flow in Western South America. Tectonophysics, 83, 63-70.
[55] Fuentes, R. (1984) Estudio de las temperaturas de la cuenca Maranón. Unpublished Report 300-629-84, Dept. of Technology, Div. of Exploration and Exploitation, Petróleos del Perú.
[56] Ocola, L. (1985) Flujo calórico en el nor-oriente peruano: Cuenca Maranón. III Simposio Sudamericano de COGEODATA, Tema No. 20, Lima.
[57] Sclater, J.G., Vacquier, V. and Rohrhirsch, J.H. (1970) Terrestrial Heat Flow Measurements on Lake Titicaca, Peru. Earth and Planetary Science Letters, 8, 45-54.
[58] Vieira, F.P. (2011) Global Representation of Mantle Heat Flow (in Portuguese). Master’s Thesis, National Observatory, Rio de Janeiro, 1-67.
[59] Vieira, F.P. and Hamza, V.M. (2011) Global Heat Flow: Comparative Analysis Based on Experimental Data and Theoretical Values. Proceedings of the 12th International Congress of Brazilian Geophysical Society, Rio de Janeiro, 15-18 August 2011, 1-6.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.