Provenance Variability during Damuda Sedimentation in the Talchir Gondwana Basin, India – A Statistical Assessment
Rabindra Nath Hota, Bijay Kumar Das, Madhusmita Sahoo, Wataru Maejima
.
DOI: 10.4236/ijg.2011.22013   PDF    HTML     6,547 Downloads   12,177 Views   Citations

Abstract

The Talchir Gondwana basin houses the Talchir Formation at the base, succeeded by the Damuda Group and the Kamthi Formation in upward progression. The present study is an attempt to determine the provenance of the Damuda Group and its variability in terms of location, climate and tectonism through time from the composition of sandstone grains and detritus of the constituent Karharbari, Barakar and Barren Measures formations. The Damuda sandstones are composed of variable amounts of monocrystalline undulatory, nonundulatory and polycrystalline quartz grains, potash and plagioclase feldspars as well as metamorphic and sedimentary rock fragments in addition to heavy accessories. Palaeocurrent studies suggest that the Eastern Ghats Supergroup lying to the south of the basin served as the source area of the Damuda sediments. Plots of sandstone composition in tectonic setting discrimination diagrams suggest derivation of the detritus from craton interior, continental block and recycled orogen provinces. Statistical analyses indicate significant differences in the detrital modes of the sandstones of the Karharbari, Barakar and Barren Measures formations, which may be attributed to temporal and spatial variation of the provenance coupled with climate change in commensurate with Damuda sedimentation.

Share and Cite:

R. Hota, B. Das, M. Sahoo and W. Maejima, "Provenance Variability during Damuda Sedimentation in the Talchir Gondwana Basin, India – A Statistical Assessment," International Journal of Geosciences, Vol. 2 No. 2, 2011, pp. 120-137. doi: 10.4236/ijg.2011.22013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. R. Dickinson and C. A. Suczek, “Plate Tectonics and Sandstone Composition,” The American Association of Petroleum Geologists Bulletin, Vol. 63, No. 12, 1979, pp. 2164-2182.
[2] R. V. Ingersoll and C. A. Suczek, “Petrology and Provenance of Neogene Sand from Nicober and Bengal Fans, DSDP Sites 211 and 218,” Journal of Sedimentary Petrology, Vol.49, No. 4, 1979, pp. 1217-1228.
[3] W. R. Dickinson, S. L. Beard, J. L. Erjavec, R. C. Fergussusson, K. F. Inman, R. A. Knepp, F. A. Linberg and P. T. Ryberg, “Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting,” Geological Society of America Bulletin, Vol. 94, No. 2, 1983, pp. 222-235. doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
[4] W. R. Dickinson, “Interpreting Provenance Relations from Detrital Modes of Sandstones,” In: G. C. Zuffa, Ed., Provenance of Arenites, D. Reidel Publishing Company, Dordrecht, 1985, pp.333-361.
[5] A. Basu, “Petrology of Holocene Fluvial Sand Derived from Plutonic Source Rocks: Implications to Palaeoclimatic Interpretation,” Journal of Sedimentary Petrology, Vol. 46, No. 3, 1976, pp. 694-709.
[6] L. J. Suttner and P. K. Dutta, “Alluvial Sandstone Composition and Palaeoclimate, I. Framework Mineralogy,” Journal of Sedimentary Petrology, Vol. 56, No. 3, 1986, pp. 329-345.
[7] L. E. Savoy, R. K. Stevenson and E. W. Mountjoy, “Provenance of Upper Devonian – Lowet Carboniferous Miogeoclinal Strata, Southeastern Canadian Cordillera: Link between Tectonics and Sedimentation,” Journal of Sedimentary Research, Vol. 70, No. 1, 2000, pp. 181-193. doi:10.1306/2DC40909-0E47-11D7-8643000102C1865D
[8] L. Shao, K. Stattegger and C.-D. Garbe-Schoenberg, “Sandstone Petrology and Geochemistry of the Turpan Basin (NW China): Implications for the Tectonic Evolution of a Continental Basin,” Journal of Sedimentary Research, Vol. 71, No. 1, 2001, pp. 37-49. doi:10.1306/041800710037
[9] J. Preston, A. Hartley, M. Mange-Razetzky, M. Hole, G. May, S. Buck and L. Vaughan, “The Provenance of Triassic Continental Sandstones from the Beryl Field, Nor- thern North Sea: Mineralogical, Geochemical and Sedimentological Constraints,” Journal of Sedimentary Research, Vol. 72, No. 1, 2002, pp. 18-29. doi:10.1306/042201720018
[10] U. Zimmermann and H. Bahlburg, “Provenance Analysis and Tectonic Setting of the Ordovician Clastic Deposits in the Southern Puna Basin, NW Argentina,” Sedimentology, Vol. 50, No. 6, 2003, pp. 1079-1104. doi:10.1046/j.1365-3091.2003.00595.x
[11] E. L. Pera and J. Arribas, “Sand Composition in an Iberian Passive-Margin Fluvial Course: The Tajo River,” Sedimentary Geology, Vol. 171, No. 1-4. 2004, pp. 261- 281. doi:10.1016/j.sedgeo.2004.05.019
[12] Y. J. Joo, Y. I. Lee and Z. Bai, “Provenance of the Qingshuijian Formation (Late Carboniferous), NE China: Implications for Tectonic Processes in the Northern Margin of the North China Block,” Sedimentary Geology, Vol. 177, No. 1-2, 2005, pp. 97-114. doi:10.1016/j.sedgeo.2005.02.003
[13] A. H. M. Ahmad and G. M. Bhat, “Petrofacies, Provenance and Diagenesis of the Dhosa Sandstone Member (Chari Formation) at Ler, Kutchchh Sub-Basin, Western India,” Journal of Asian Earth Sciences, Vol. 27, No. 6, 2006, pp. 857-872. doi:10.1016/j.jseaes.2005.08.005
[14] M. Bernet, D. Kapoutsos and K. Bassett, “Diagenesis and Provenance of Silurian Quartz Arenites in South-Eastern New York State,” Sedimentary Geology, Vol. 201, No. 1-2, 2007, pp. 43-55. doi:10.1016/j.sedgeo.2007.04.006
[15] S. R. Devi and M. E. A. Mondal, “Provenance and Tectonic Setting of Barail (Oligocene) and Surma (Miocene) Group of Surma-Barak Basin, Manipur, India: Petrographic Constraints,” Journal of the Geological Society of India, Vol.71, No. 4, 2008, pp. 459-467.
[16] J. J. Veevers and R. C. Tewari, “Gondwana Master Basin of Peninsular India between Tethys and the Interior of the Gondwana Province of Pangea,” Geological Society of America, Boulder, 1995, p. 72.
[17] A. D. Miall, “An Introduction to Rift Basins and Their Sediments,” Sedimentary Geology, Vol. 147, No. 1-2, 2002, pp. 3-8. doi:10.1016/S0037-0738(01)00183-X
[18] S. K. Chakrabarti and R. K. Chakrabarti, “Nature of the Precambrian Crustal Assembly and Evolution of the Godavari Valley Gondwana Basins of Peninsular India,” Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 1994, pp. 599-612.
[19] R. N. Hota, W. Maejima and B. Mishra, “Similarity of Palaeocurrent Pattern of Lower Gondwana Formations of the Talchir and the Ong-River Basins of Orissa, India – An Indication of Dismemberment of a Major Gondwana Basin,” Gondwana Research, Vol. 10, No. 3-4, 2006, pp. 363-369. doi:10.1016/j.gr.2006.02.009
[20] R. N. Hota and W. Maejima, “Comparative Study of Cyclicity of Lithofacies in Lower Gondwana Formations of Talchir Basin, Orissa, India: A Statistical Analysis of Subsurface Logs,” Gondwana Research, Vol. 7, No. 2, 2004, pp. 353-362. doi:10.1016/S1342-937X(05)70789-9
[21] S. Goswami, M. Das and B. C. Guru, “Permian Biodiversity of Mahanadi Master Basin, Orissa, India and Their Environmental Countenance,” Acta Palaeobotanica, Vol. 46, No. 2, 2006, pp. 101-118.
[22] R. N. Hota, W. Maejima and B. Mishra, “River Metamorphosis during Damuda Sedimentation: A Case Study from Talchir Gondwana Basin, Orissa,” Journal of the Geological Society of India, Vol. 69, No. 6, pp. 1351- 1360.
[23] R. N. Hota, “Palaeocurrent Pattern and Its Tectonic Implication during Talchir and Damuda Sedimentation in Talchir Gondwana Basin, Orissa,” Gondwana Geological Magazine, Vol. 22, No. 1, 2007, pp. 1-10.
[24] R. Das and K. L. Pandya, “Palaeocurrent Pattern and Provenance of a Part of Gondwana Succession, Talchir Basin, Orissa,” Journal of the Geological Society of India, Vol. 50, No. 4, 1997, pp. 425-433.
[25] K. L. Pandya, “Gondwanas,” In: N. K. Mahalik, H. K. Sahoo, R. N. Hota, B. P. Mishra, J. K. Nanda and A. B. Panigrahi, Eds., Geology and Mineral Resources of Orissa, Society of Geoscientists and Allied Technologists, Bhubaneswar, 2006, pp. 91-103.
[26] C. S. Raja Rao, “Coal Resources of Tamilnadu, Andhra Pradesh, Orissa and Maharastra,” Bulletin of Geological Survey of India, Vol. 45, 1982, pp. 41-52.
[27] A. Basu, S. W. Young, L. J. Suttner, W. C. James and G. H. Mack, “Reevaluation of the Use of Undulatory Extinction and Polycrystallinity in Detrital Quartz for Provenance Interpretation,” Journal of Sedimentary Petrology, Vol. 45, No. 4, 1975, pp. 873-882.
[28] R. H. Dott, “Wacke, Graywacky and Matrix – What Approach to Immature Sandstone Classification?” Journal of Sedimentary Petrology, Vol. 34, No. 3, 1964, pp. 625- 632.
[29] J. C. Davis, “Statistics and Data Analysis in Geology,” John Wiley and Sons, Hoboken, 2002, p. 639.
[30] W. Maejima, R. Das, K. L. Pandya and M. Hayashi, “Deglacial Control on Sedimentation and Basin Evolution of Permo-Carboniferous Talchir Formation, Talchir Gondwana Basin, Orissa, India,” Gondwana Research, Vol. 7, No. 2, 2004, pp. 339-352. doi:10.1016/S1342-937X(05)70788-7
[31] M. Ramakrishnan and R. Vaidyanadhan, “Geology of India,” Geological Society of India, Bangalore, 2008, p. 556.
[32] T. K. Biswal, B. Biswal, S. Mitra and M. R. Moulik, “Deformation Pattern of the NW Terrane Boundary of the Eastern Ghats Mobile Belt, India: A Tectonic Model and Correlation with Antarctica,” Gondwana Research, Vol. 5, No. 1, 2002, pp. 45-52. doi:10.1016/S1342-937X(05)70887-X
[33] M. Ramakrishnan, J. K. Nanda and P. F. Augustine, “Geological Evolution of the Proterozoic Eastern Ghats Mobile Belt,” Geological Survey of India Special Publication, No. 44, 1998, pp. 1-21.
[34] R. N. Hota and W. Maejima, “Heavy Minerals of the Barakar Formation, Talchir Gondwana Basin, Orissa,” Journal of Geological Society of India, Vol. 74, No. 3, 2009, pp. 375-384. doi:10.1007/s12594-009-0141-6

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.