Share This Article:

Investigation on Lanthanum Fluoride as a Novel Cathode Buffer Material Layer for the Enhancement of Stability and Performance of Organic Solar Cell

Full-Text HTML XML Download Download as PDF (Size:3025KB) PP. 280-287
DOI: 10.4236/opj.2014.410027    3,694 Downloads   4,299 Views   Citations

ABSTRACT

This article presents the investigation on very thin Lanthanum Fluoride (LaF3) layer as a new cathode buffer layer (CBL) for organic solar cell (OSC). OSCs were fabricated with poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) polymer blend at 1:1 ratio. Electron-beam evaporation at room temperature was used to deposit 3 and 5 nm thick LaF3 layer. A very smooth surface of LaF3 with an average roughness of 0.2 nm has been observed by the Atomic Force Microscope (AFM) that is expected to prevent diffusion of cathode metal ion through it and thereby enhance the lifetime and stability of OSC. Huge enhancement of JSC and VOC was also observed for 3 nm-thick LaF3 CBL. Several excellent features of the LaF3 layer such as, transporting electron through tunneling, blocking of holes to the cathode, minimizing recombination, protecting the photoactive polymer from ambient oxygen, and reducing degradation/oxidation of any low work function layer at the cathode interface, might have contributed to the performance enhancement of OSC. The experimental findings indicate the promise of LaF3 to be an excellent CBL material for OSC.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Islam, M. , Saklayen, M. , Rahman, M. , Baerwolff, H. and Ismail, A. (2014) Investigation on Lanthanum Fluoride as a Novel Cathode Buffer Material Layer for the Enhancement of Stability and Performance of Organic Solar Cell. Optics and Photonics Journal, 4, 280-287. doi: 10.4236/opj.2014.410027.

References

[1] Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S. and Williams, S.P. (2010) Polymer-Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 22, 3839-3856.
http://dx.doi.org/10.1002/adma.200903697
[2] Helgesen, M., Søndergaard, R. and Krebs, F.C. (2010) Advanced Materials and Processes for Polymer Solar Cell Devices. Journal of Materials Chemistry, 20, 36-60.
http://dx.doi.org/10.1039/b913168j
[3] Peet, J., Senatore, M.L., Heeger, A.J. and Bazan, G.C. (2009) The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells. Advanced Materials, 21, 1521-1527.
http://dx.doi.org/10.1002/adma.200802559
[4] Yang, H.B., Song, Q.L., Li, C.M. and Lu, Z.S. (2008) New Architecture for Accurate Characterization of the Behavior of Individual Sub-Cells within a Tandem Organic Solar Cell. Energy Environmental Science, 1, 389-394.
http://dx.doi.org/10.1039/b805140b
[5] Ameri, T., Dennler, G., Lungenschmied, C. and Brabec, C.J. (2009) Organic Tandem Solar Cells: A Review. Energy Environmental Science, 2, 347-363.
http://dx.doi.org/10.1039/b817952b
[6] Siddiki, M.K., Li, J., Galipeau, D. and Qiao, Q. (2010) A Review of Polymer Multijunction Solar Cells. Energy Environmental Science, 3, 867-883.
http://dx.doi.org/10.1039/b926255p
[7] Yun, M.H., Kim, G.-H., Yang, C. and Kim, J.Y. (2010) Towards Optimization of P3HT:bisPCBM Composites for Highly Efficient Polymer Solar Cells. Journal of Materials Chemistry, 20, 7710-7714.
http://dx.doi.org/10.1039/c0jm00790k
[8] Chen, H.-Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y. and Li, G. (2009) Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency. Nature Photonics, 3, 649-653.
http://dx.doi.org/10.1038/nphoton.2009.192
[9] Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K. and Heeger, A.J. (2009) Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%. Nature Photonics, 3, 297-302.
http://dx.doi.org/10.1038/nphoton.2009.69
[10] Steim, R., Koglera, F.R. and Brabec, C.J. (2010) Interface Materials for Organic Solar Cells, Interface Materials for Organic Solar Cells. Journal of Materials Chemistry, 20, 2499-2512.
http://dx.doi.org/10.1039/b921624c
[11] Lee, T.W., Lim, K.G. and Kim, D.H. (2010) Approaches toward Efficient and Stable Electron Extraction Contact in Organic Photovoltaic Cells: Inspiration from Organic Light-Emitting Diodes. Electronic Materials Letters, 6, 41-50.
http://dx.doi.org/10.3365/eml.2010.03.041
[12] Park, J.H., Lee, T.W., Chin, B.D., Wang, D.H. and Park, O.O. (2010) Roles of Interlayers in Efficient Organic Photovoltaic Devices. Macromolecular Rapid Communications, 31, 2095-2108.
http://dx.doi.org/10.1002/marc.201000310
[13] Mihailetchi, V.D., Blom, P.W.M., Hummelen, J.C. and Rispens, M.T. (2003) Cathode Dependence of the Open-Circuit Voltage of Polymer: Fullerene Bulk Heterojunction Solar Cells. Journal of Applied Physics, 94, 6849-6854.
http://dx.doi.org/10.1063/1.1620683
[14] Birgerson, J., Fahlman, M., Broms, P. and Salaneck, W.R. (1996) Conjugated Polymer Surfaces and Interfaces: A Mini-Review and Some New Results. Synthetic Metals, 80, 125-130.
http://dx.doi.org/10.1016/S0379-6779(96)03692-2
[15] Glatthaar, M., Riede, M., Keegan, N., Sylvester-Hvid, K., Zimmermann, B., Niggemann, M., Hinsch, A. and Gombert, A. (2007) Efficiency Limiting Factors of Organic Bulk Heterojunction Solar Cells Identified by Electrical Impedance Spectroscopy. Solar Energy Materials and Solar Cells, 91, 390-393.
http://dx.doi.org/10.1016/j.solmat.2006.10.020
[16] Kim, J.Y., Kim, S.H., Lee, H.H., Lee, K., Ma, W., Gong, X. and Heeger, A.J. (2006) New Architecture for High-Efficiency Polymer Photovoltaic Cells. Advanced Materials, 18, 572-576.
http://dx.doi.org/10.1002/adma.200501825
[17] Choi, H., Cho, H., Song, S., Suh, H., Park, S. and Kim, J.Y. (2010) Enhanced Open Circuit Voltage by Hydrophilic Ionic Liquids as Buffer Layer in Conjugated Polymer-Nanoporous Titania Hybrid Solar Cells. Physical Chemistry Chemical Physics, 12, 15309-15314.
http://dx.doi.org/10.1016/j.solmat.2009.01.005
[18] Jiang, X., Xu, H., Yang, L., Shi, M., Wang, M. and Chen, H. (2009) Effect of CsF Interlayer on the Performance of Polymer Bulk Heterojunction Solar Cells. Solar Energy Materials and Solar Cells, 93, 650-653.
http://dx.doi.org/10.1016/j.solmat.2009.01.005
[19] Reese, M.O., White, M.S., Rumbles, G., Ginley, D.S. and Shaheen, S.E. (2008) Optimal Negative Electrodes for Poly (3-Hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Bulk Heterojunction Photovoltaic Devices. Applied Physics Letters, 92, Article ID: 053307.
http://dx.doi.org/10.1063/1.2841067
[20] Park, J.H., Park, O.O., Yu, J.W., Kim, J.K. and Kim, Y.C. (2004) Effect of Polymer-Insulating Nanolayers on Electron Injection in Polymer Light-Emitting Diodes. Applied Physics Letters, 84, 1783-1785.
http://dx.doi.org/10.1063/1.1667014
[21] Liu, J., Shi, Y. and Yang, Y. (2001) Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices. Advanced Functional Materials, 11, 420-424.
http://dx.doi.org/10.1002/1616-3028(200112)11:6<420::AID-ADFM420>3.0.CO;2-K
[22] Hass, G., Ramsey, J.B. and Thun, R. (1959) Optical Properties of Various Evaporated Rare Earth Oxides and Fluorides. Journal of the Optical Society of America, 49, 116-118.
http://dx.doi.org/10.1364/JOSA.49.000116
[23] Hopkins, R.H., Hoffman, R.A. and Kramer, W.E. (1975) Moisture Resistant Optical Films: Their Production and Characterization. Applied Optics, 14, 2631-2638.
http://dx.doi.org/10.1364/AO.14.002631
[24] Filinski, I. (1972) The Effects of Sample Imperfections on Optical Spectra. Physica Status Solidi (b), 49, 577-588.
http://dx.doi.org/10.1002/pssb.2220490220
[25] Dahou, F.Z., Cattin, L., Garnier, J., Ouerfelli, J., Morsli, M., Louarn, G., et al. (2010) Influence of Anode Roughness and Buffer Layer Nature on Organic Solar Cells Performance. Thin Solid Films, 518, 6117-6122.
http://dx.doi.org/10.1016/j.tsf.2010.06.009
[26] Miikkulainen, V., Leskela, M., Ritala, M. and Puurunen, R.L. (2013) Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends. Journal of Applied Physics, 113, Article ID: 021301.
http://dx.doi.org/10.1063/1.4757907
[27] Jabbour, G.E., Kippelen, B., Armstrong, N.R. and Peyghambarian, N. (1998) Aluminum Based Cathode Structure for Enhanced Electron Injection in Electroluminescent Organic Devices. Applied Physics Letters, 73, 1185-1187.
http://dx.doi.org/10.1063/1.122367
[28] Lee, J., Park, Y., Lee, S.K., Cho, E.J., Kim, D.Y., Chu, H.Y., Lee, H., Do, L.M. and Zyung, T. (2002) Tris-(8-Hydroxyquinoline)Aluminum-Based Organic Light-Emitting Devices with Al/CaF2 Cathode: Performance Enhancement and Interface Electronic Structures. Applied Physics Letters, 80, 3123-3125.
http://dx.doi.org/10.1016/S0379-6779(98)80071-4
[29] Lee, C.H. (1997) Enhanced Efficiency and Durability of Organic Electroluminescent Devices by Inserting a Thin Insulating Layer at the Alq3/Cathode Interface. Synthetic Metals, 91, 125-127.
http://dx.doi.org/10.1016/S0379-6779(98)80071-4
[30] Lee, Y.S., Park, J.H., Kwak, Y.H., Kim, Y.J. and Choi, J.S. (2003) Improved Characteristics of Organic Light Emitting Diodes with Coevaporated Al-Alkaline Metal Cathode. Molecular Crystals and Liquid Crystals, 405, 89-95.
http://dx.doi.org/10.1080/15421400390264207
[31] Lee, J., Park, Y., Kim, D.Y., Chu, H.Y., Lee, H. and Do, L.M. (2003) High Efficiency Organic Light-Emitting Devices with Al/NaF Cathode. Applied Physics Letters, 82, 173-175.
http://dx.doi.org/10.1063/1.1537048
[32] Zhou, Y., Eck, M., Veit, C., Zimmermann, B., Rauscher, F., Niyamakom, P., Yilmaz, S., Dumsch, I., Allard, S., Scherf, U. and Krüger, M. (2011) Efficiency Enhancement for Bulk-Heterojunction Hybrid Solar Cells Based on Acid Treated CdSe Quantum Dots and Low Bandgap Polymer PCPDTBT. Solar Energy Materials and Solar Cells, 95, 1232-1237.
http://dx.doi.org/10.1016/j.solmat.2010.12.041
[33] Wang, X.J., Zhao, J.M., Zhou, Y.C., Wang, X.Z., Zhang, S.T., Zhan, Y.Q., et al. (2004) Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/LiF Cathode. Journal of Applied Physics, 95, 3828-3830.
http://dx.doi.org/10.1063/1.1655676
[34] Wiemhofer, H.D., Harke, S. and Vohrer, U. (1990) Electronic Properties and Gas Interaction of LaF3 and ZrO2. Solid State Ionics, 40-41, 433-439.
http://dx.doi.org/10.1016/0167-2738(90)90373-Y
[35] Peumans, P., Bulovic, V. and Forrest, S.R. (2000) Efficient Photon Harvesting at High Optical Intensities in Ultrathin Organic Double-Heterostructure Photovoltaic Diodes. Applied Physics Letters, 76, 2650-2652.
http://dx.doi.org/10.1063/1.126433
[36] Yu, B., Zhu, F., Wang, H.B., Li, G. and Yan, D.H. (2008) All-Organic Tunnel Junctions as Connecting Units in Tandem Organic Solar Cell. Journal of Applied Physics, 104, Article ID: 114503.
http://dx.doi.org/10.1103/PhysRev.144.593
[37] Sher, A., Solomon, R., Lee, K. and Muller, M.W. (1966) Transport Properties of LaF3. Physical Review, 144, 593-604.
http://dx.doi.org/10.1103/PhysRev.144.593
[38] Solomon, R., Sher, A. and Muller, M.W. (1966) Polarization in LaF3. Journal of Applied Physics, 37, 3427.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.